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Introduction Problem Description

® Bird Songs
= Recorded songs transformed to numerical data through FFT’s
In order to perform feature extraction.

® Performing acoustic analysis and '
classification in complex environments

= Species selected: Antbirds, neo-tropical birds that only sing poses a mayor challenge.
innate songs, which facilitate recognition. ® Objectives:
= Great Antshrike (Taraba major), Dusky Antbird (Cercomacra = To improve classifications methods by
Tyrannina), Barred Antshrike (Thamnophilus Doliatus) lowering the complexity of a data sets
= | ocation: Montes Azules, Biosphere Reserve in Chiapas using data mining.
Mexico. = To obtain the most important sound fea-
® Analysis of acoustic features obtained through feature ture characteristics of a bird’s song in or-

der to discern among species.
® We propose automatic bird species
and individual recognition by means of

extraction of bird songs.

® Computational cost
= Sensor networks in a noisy environment have power limita-

tions which will benefit from the data mining reduction. QCOU§tiC fe.ature_ e?(traction to use in con- \
® Exceptional classification results were obtained from junction with existing sensor network
reduced dimensionality databases. technoloqgies.
Feature Extraction Dusky Antbird

® Field recordings are noisy, distinctive features have to be
analyzed for each species and filtering is performed at the
software level, per species.

@® Spectral analysis is performed using Adobe Audition to iden-
tify the central frequencies of each species.

® Spectrograms are used by ornithologists to identify phonetic
sounds.

® Sound Ruler was used to identify the spectral features of
each recording.

@ A curated database was constructed with the relevant infor- LTopI::Wavz;%BmH e et
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Methods

Data Mining Quantization

@ Data Mining was used to extract important data obtained Quatization - Step by step example
' vect

from the preprocessing stage. [_j093f9683 e

@ Data Mining of acoustic features.
= |nnovative algorithm combination (J4.8 + Naive-Bayes, ID3 +
Naive-Bayes). | | "
. A|gOI’itthZ 4 |2n1c.r297ags§ = (max(vector) - min(vector)) / (((2*bits) -1) -1)
= Decision tree algorithms ID3 and J4.8
= Probabilistic classifier of Naive-Bayes

5 initial = min(vector) 3 end = max(vector)
1 _33.7068 =1 03.9683

partition = [initial:increase.end], one value smaller than codebook
=l [-33.7068 -12.4276 8.8516 30.1307 51.4099 72.6891 93.9683]

= (QQuantization used to convert numerical into nominal data for ID3. codebook = codebook = [0:1:(27bits -1)]
= Classification improvement on the reduced data set due to the re- w2 ¢ 4o @ @
moval of cross-attribute dependent information. quants = [index,quants] = quantiz(vector,partition,codebook)
2 6 5 0]
ID3 and J4.8 NEWCEEEVEER
@ Low computational cost ® Chosen because decision tree algo-
= |D3 O(np) for symbolic data. rithms are unstable since they depend on
= J4.8 O(n?) for numerical data. the sample data that is selected.
® Unigue combination of algorithms, ID3+Naive-Bayes used in or- ® Naive-Bayes lets us visualize the de-
der to eliminate the attribute redundancy and to reduce the statisti- gree of membership to a class of each test
cal dependancy. sample.
@ ID3 and J4.8 output classification rules which leads to a consid- ® This algorithm assumes the statistical
erable attribute reduction. independence among the attributes of the
= |ID3 reduction: 71 to 41 data sets.

= J4.8 reduction: 71 to 47

| ® High affini ith -
® J4.8 was chosen for its ability to handle numerical data. igh affinity with non-redundant data

sets.

® Most significant attributes for classification
found:
= Pulse dominant frequency, width dominant Correct B Incorrect Correct B Incorrect
frequency, number of pulses, dominant fre- on  a5%  So% 7% 100% .-
quency at the final 50% of the call. B 8557 _
@ Attribute and computational cost reduction. _ i l e e
@ J4.8 has a high classification efficiency Quanization + 103 (Complece duaase) - oasen - | R—
with a low time and power cost. | I i
@ Unique algorithm combination improved e Ll " iiml . R s
the classification percentage of the statistical - . Cercomacra tyranning
. ] J4.8 (Complete Database) 399 2_33%\
classifier of Naive-Bayes. p S "’TW s il
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