
1

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

The Practice of Computing Using

PYTHON
William Punch Richard Enbody

Chapter 6

Lists and
Tuples

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

2

Data Structures

3

Data Structures and Algorithms

•  Part of the “science” in computer science
is the design and use of data structures
and algorithms.

•  As you go on in CS, you will learn more
and more about these two areas.

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

4

Data Structures

•  Data structures are particular ways of
storing data to make some operation
easier or more efficient. That is, they are
tuned for certain tasks.

•  Data structures are suited to solving
certain problems, and they are often
associated with algorithms.

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

5

Kinds of Data Structures

Roughly two kinds of data structures:
•  Built-in data structures - data structures

that are so common as to be provided by
default.

•  User-defined data structures - (classes in
object oriented programming) designed for
a particular task.

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

6

Python Built-in Data Structures

•  Python comes with a general set of built-in
data structures:
–  lists
–  tuples
– string
– dictionaries
– sets
– others...

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

7

Lists

8

The Python List Data Structure

•  A list is very simple - it is just an ordered
sequence of items.

•  You have seen such a sequence before in
a string. A string is just a particular kind of
list. What kind?

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

9

Make a List

•  Like all data structures, lists have a
constructor, named the same as the data
structure. It takes an iterable data
structure and adds each item to the list.

•  It also has a shortcut: the use of square
brackets [] to indicate explicit items.

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

10

More List Making

aList = list(‘abc’)	
	aList  [‘a’, ‘b’, ‘c’]	
	
newList = [1, 3.14159, ‘a’, True]	
	

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

11

Similarities with Strings

•  concatenate/+ (but only of lists)
•  repeat/*
•  indexing (the [] operator)
•  slicing ([:])
•  membership (the in operator)
•  len (the length operator)

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

12

Differences Between Lists and Strings

•  Lists can contain a mixture of any python
object; strings can only hold characters.
– 1,”bill”,1.2345, True

•  Lists are mutable; their values can be
changed while strings are immutable.

•  Lists are designated with [], with elements
separated by commas; strings use “”.

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

13

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

14

Indexing

•  Can be a little confusing - what does the []
mean, a list or an index?

[1, 2, 3][1]  2	
•  Context solves the problem. An index

always comes at the end of an expression
and is preceded by something (a variable,
a sequence).

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

15

List of Lists
	myLst = [‘a’, [1, 2, 3], ‘z’]	

•  What is the second element (index 1) of

that list?
•  Another list:
	 	myLst[1][0] # apply left to right	
	 	[1, 2, 3][0]  1	
	 	myLst[1]  [1, 2, 3]	
	 		

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

16

Operators
[1, 2, 3] + [4]  [1, 2, 3, 4]	
	
[1, 2, 3] * 2  [1, 2, 3, 1, 2, 3]	
	
1 in [1, 2, 3]  True	
	
[1, 2, 3] < [1, 2, 4]  True	
	Compare index to index, the first
difference determines the result.	

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

17

List Functions

•  len(lst): Number of elements in list (top
level). len([1, [1, 2], 3])  3	

•  min(lst): Minimum element in the list. If list
of lists, looks at first element of each list.

•  max(lst): Max element in the list.
•  sum(lst): Sum the elements, numeric only.

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

18

Iteration

for element in [1, [1, 2], ‘a’,True]:	
 print element	
 	
1	
[1, 2]	
‘a’	
True	

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

19

Mutable

20

Change an Object’s Contents

•  Strings are immutable. Once created, the
object’s contents cannot be changed. New
objects can be created to reflect a change,
but the object itself cannot be changed:
	myStr = ‘abc’	
	myStr[0] = ‘z’ 	 	# cannot do!	
	# instead, make new str	
	newStr = myStr.replace(‘a’,’z’) 	

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

21

Lists are Mutable

•  Unlike strings, lists are mutable. You can
change the object’s contents!

myLst = [1, 2, 3]	
myLst[0] = 127	
print myLst  [127, 2, 3]	

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

22

List Methods

•  Remember, a function is a small program
(such as len) that takes some arguments,
the stuff in the parenthesis, and returns
some value.

•  A method is called in a special way, the
“dot call”. It is called in the context of an
object (or a variable holding an object).

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

23

Again, Lists have Methods

myList = [‘a’,1,True]
myList.append(‘z’)

the object that
we are calling the
method with

the name of
the method

arguments to
the method

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

24

Some New Methods

•  A list is mutable and can change:
– myList[0]=‘a’ #index assignment
– myList.append(), myList.extend()
– myList.pop()
– myList.insert(), myList.remove()
– myList.sort()
– myList.reverse()

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

25

More about List Methods

•  Most of these methods do not return a
value.

•  This is because lists are mutable so the
methods modify the list directly; there is no
need to return anything.

•  Can be confusing.

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

26

Unusual Results
myLst = [4, 7, 1, 2]	
myLst = myLst.sort()	
myLst  None 	 # what happened?	
	
What happened was the sort operation changed
the order of the list in place (right side of
assignment). Then the sort method returned None,
which was assigned to the variable. The list was
lost and None is now the value of the variable.

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

27

Range

•  We have seen the range function before. It
generates a sequence of integers.

•  In fact, what it generates is a list with that
sequence:

myLst = range(1, 5)	
myLst  [1, 2, 3, 4]	

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

28

Split

•  The string method split generates a
sequence of characters by splitting the
string at certain split-characters.

•  It, too, returns a list:
splitLst = ‘this is a test’.split()	
splitLst 	
  [‘this’, ‘is’, ‘a’, ‘test’]	

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

29

Sorting
•  Only lists have a built-in sorting method.

Thus you often convert your data to a list if
it needs sorting:

myLst = list(‘xyzabc’)	
myLst  [‘x’,’y’,’z’,’a’,’b’,’c’]	
myLst.sort()	
# convert back to a string	
sortStr = ‘’.join(myLst) 	
  ‘abcxyz’	

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

30

Sorted Function

•  The sorted function will break a sequence
into elements and sort the sequence,
placing the results in a list:

sortLst = sorted(‘hi mom’)
  [‘ ‘,’h’,’i’,’m’,’m’,’o’]	

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

31

Some Examples

32

Anagram Example

•  Anagrams are words that contain the
same letters in a different order. For
example: ‘iceman’ and ‘cinema.’

•  A strategy to identify anagrams is to take
the letters of a word, sort those letters,
then compare the sorted sequences.

•  Anagrams should have the same
sequence.

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

33

Code Listing
6.1

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

34

def areAnagrams(word1, word2):	
 """Return true, if anagrams	
 # Sort the words.	
 word1_sorted = sorted(word1)	
 word2_sorted = sorted(word2)	
	
 # compare lists.	
 if word1_sorted == word2_sorted: 	
 return True	
 else:	
 return False	

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

35

Code Listing 6.5
Words from Text File

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

36

def makeWordList(gFile):
 """Create a list of words from the file."""
 speech = [] # list of file words
 for lineString in gFile:
 lineList = lineString.split()
 for word in lineList:
 if word != "--”: # straggler in file
 speech.append(word)
 return speech

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

37

Code Listing 6.6
Unique Words

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

38

requires list of words from 6.5
def makeUnique(speech):
 """Create a list of unique words."""
 unique = [] # list of unique words
 for word in speech
 # check first if word is already there
 if word not in unique:
 unique.append(word)
 return unique

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

39

More about Mutables

40

Reminder: Assignment

•  Assignment takes an object (the final
object after all operations) from the RHS
and associates it with a variable on the
left-hand side.

•  When you assign one variable to another,
you share the association with the same
object.

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

41

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

42

Immutables

•  Object sharing, two variables associated
with the same object, is not a problem
since the object cannot be changed.

•  Any changes that occur generate a new
object.

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

43

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

44

Mutability Changes an Object

•  If two variables associate with the same
object, then both reflect any change to
that object.

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

45

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

46

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

47

Copying

If we copy, does that solve the problem?

myLst = [1, 2, 3]
newLst = myLst[:]

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

48

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

49

The Problem is What Gets
Copied…

•  What actually gets copied is the top level
reference.

•  If the list has nested lists or uses other
associations, the association gets copied.
This is termed a shallow copy.

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

50

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

51

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

52

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

53

Tuples

54

Tuples

•  Tuples are easy: they are simply
immutable lists.

•  They are designated with (,):
	
	myTuple = (1,’a’,3.14,True)	

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

55

The Question is, Why?

•  The real question is, why have an
immutable list, a tuple, as a separate
type?

•  An immutable list gives you a data
structure with some integrity, some
permanency, if you will.

•  You know you cannot accidentally change
one.

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

56

Lists and Tuples

•  Everything that works with a list works with
a tuple except methods that modify the
tuple.

•  Thus indexing, slicing, len, print all work as
expected.

•  However, none of the mutable methods
work: append, extend, del.

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

57

Commas Make a Tuple
•  For tuples, you can think of a comma as

the operator that makes a tuple, where the
() simply acts as a grouping:

	myTuple = 1,2 # creates (1,2)	
	myTuple = (1,) # creates (1) 	
	myTuple = (1) # creates 1 not (1)	
	myTuple = 1, 	 # creates (1)	

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

58

Data Structures In General

59

Organization of Data

•  We have seen strings, lists and tuples so
far.

•  Each is an organization of data that is
useful for some things, not as useful for
others.

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

60

A Good Data Structure

•  Efficient with respect to us (some
algorithms).

•  Efficient with respect to the amount of
space used.

•  Efficient with respect to the time it takes to
perform some operations.

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

61

EPA Example

62

List Comprehensions

63

Lists are a Big Deal!

•  The use of lists in Python is a major part of
its power.

•  Lists are very useful and can be used to
accomplish many tasks.

•  Therefore Python provides some pretty
powerful support to make common list
tasks easier.

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

64

Constructing Lists
•  One way is a “list comprehension”

 [n for n in range(1,5)]	

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

[n for n in range(1,5)]

mark the comp with []

what we
collect

what we iterate
through. Note that
we iterate over a set of
values and collect some
(in this case all) of them

returns
[1,2,3,4]

65

Modifying What We Collect

[n**2 for n in range(1,6)]	

•  Returns [1,4,9,16,25]. Note that we can
only change the values we are iterating
over, in this case n.

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

66

Multiple Collects
[x+y for x in range(1,4) for y in range
(1,4)]	

It is as if we had done the following:
myList = []	
for x in range (1,4):	
	for y in range (1,4):	
 myList.append(x+y)	

  [2,3,4,3,4,5,4,5,6]	

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

67

Modifying What Gets Collected

	[c for c in “Hi There Mom” if c.isupper()]	

•  The “if” part of the comprehensive controls
which of the iterated values is collected at
the end. Only those values which make
the if part true will be collected:
  [‘H’,’T’,’M’]

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

