The Practice of Computing Using

PYTHON

William Punch ;] Richard Enbody

Chapter 4

Working with
Strings

Addison-Wesley
is an imprint of

Sequence of Characters

» We've talked about strings being a
sequence of characters.

* A string is indicated between " "or * °

* The exact sequence of characters is
maintained.

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

And Then There is " ™

* Triple quotes preserve both the vertical
and horizontal formatting of the string

* Allow you to type tables, paragraphs,
whatever and preserve the formatting

“PP+h1is 1s
a test
today” 99

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserve d

Strings

Can use single or double quotes:
S = “spam”

®s = ‘spam’

Just don’'t mix them!

e myStr = ‘hit mom”
Inserting an apostrophe:
= “knight’s” # mix up the quotes

= ‘knight\’s’ # escape single quote

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserve d

The Index

* Because the elements of a string are a
seguence, we can associate each element
with an index, a location in the sequence:
— positive values count up from the left,

beginning with index O

— negative values count down from the right,
starting with -1

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

characters | H | e | | 0 WI| o r | d

index | O 1 2 3 4 5 6 7 8 9 10

FIGURE 4.1 The index values for the string '"Hello World’.

© 2011 Pearson Addison-Wesley. All rights reserved.

Accessing an Element

A particular element of the string is
accessed by the index of the element
surrounded by square brackets []

helloStr = ‘Hello World’

print helloStr[1] => prints ‘e’

print helloStr[-1] => prints ‘d’

print helloStr[11] => ERROR

© 2011 Pearson Addison-Wesley. All rights reserved.

Slicing: the Rules

* slicing is the ability to select a subsequence of
the overall sequence

e uses the syntax [start : finish], where:

— start isthe index of where we start the
subsequence

— finish is the index of one after where we end the
subsequence
« if either start or finish are not provided, it
defaults to the beginning of the sequence for
start and the end of the sequence for f1nish

Half Open Range for Slices

* slicing uses what is called a half-open
range

* the first index is included in the sequence
* the last index is one after what is included

helloString[6:10]

characters | H | e | | 0 W | o r | d

index | O 1 2 3 4 5 6 7 8 9 10

T T

first last

FIGURE 4.2 Indexing subsequences with slicing.

10

© 2011 Pearson Addison-Wesley. All rights reserved.

helloString[6:]

characters | H | e | | 0 WI| o r | d

index | O 1 2 3 4 5 6 7 8 9 10

I I

first last

helloString[:5]

characters | H | e I I 0 WI| o r I d

index | O 1 2 3 4 5 6 7 8 9 10

FIGURE 4.3 Two default slice examples.
1

© 2011 Pearson Addison-Wesley. All rights reserved.

helloString[3:-2]

characters | H | e | | | | O W | o | | d
ndex | O 1 2 3 4 S5 6 7 9 10
T T
first last
FIGURE 4.5 Another slice example.
12

© 2011 Pearson Addison-Wesley. All rights reserved.

Extended Slicing

 also takes three arguments:
— [start:finish:countBy]

 defaults are:

—start is beginning, finish is end,

countBy is 1
myStr = ‘hello world’
myStr[0:11:2]] ‘hlowrd’

13

helloString[: :2]

characters | H | e | | 0 W | o r | d

index

o 1 2 3 4 5 6 7 8 9 10
N\ S\
FIGURE 4.6 Slicing with a step.

14

© 2011 Pearson Addison-Wesley. All rights reserved.

Some Python “ldioms”

 |dioms are python “phrases” that are used for a
common task that might be less obvious to non-
python folk.

 How to make a copy of a string:
myStr = ‘hi1 mom’

newStr = myStr[:]

* How to reverse a string:

myStr = ‘madam I’m adam’
reverseStr = myStr[::-1]

15

Useful operations

* We can check that a string contains
“number” o0 a substring contains numbers
using the isdigit() function:

— Mystr =123’

— Mystr.isdigit() - TRUE
— Str="12¢’

— Str.isdigit() -> False

— Str{1].isdigit() - True

16

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

Basic String Operations

s = ‘spam’

 length operator len()

len(s) M) 4

e +is concatenate

newStr = ‘spam’ + ‘-’ + ‘spam-’
print newStr [¥] spam-spam-

* *is repeat, the number is how many times
newStr * 3 [¥
spam-spam-spam-spam-spam-spam-

18

Some Detalls

« Both + and * on strings make a new string,
but does not modify the arguments.

* Order of operation is important for
concatenation, irrelevant for repetition.

* The types required are specific. For
concatenation you need two strings; for
repetition, a string and an integer.

19

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

What Does A + B Mean?

* What operation does the above represent?
It depends on the types!

— two strings, concatenation
— two integers addition

* The operator + is overloaded.

— the operation + performs depends on the
types it is working on

20

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

The type function

* You can check the type of the value
associated with a variable using type

myStr = ‘hello world’

type(myStr)] yilelds <type ‘str’>
myStr = 245

type(myStr) [¥] yields <type ‘int’>

21

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

String Comparisons, Single Char

* There are two systems for representing
characters: ASCIl and Unicode

« ASCII takes the English letters, numbers
and punctuation marks and associates
them with an integer number

 Single character comparisons are based
on that number

22

Dec HxOct Char Dec Hx Oct Html Chr |Dec Hx Oct Htmml Chr| Dec Hx Oct Html Chr
0 0 000 NUL (null) 32 20 040 &«#32; Space| 64 40 100 «#64; [| 96 60 140 `
1l 1 001 50H (start of heading) 33 21 041 ! ! 65 41 101 A 4 97 61 141 a a
2 2 002 5TX (start of text) 34 22 04z &«#34; 7 66 42 102 &«#66; B 95 62 142 &«#98; b
3 3 003 ETX (end of text) 35 23 043 # # 67 43 103 &«#67; C 99 63 143 c C
4 4 004 EOT (end of transmission) 36 24 044 $ 5 65 44 104 «#68; D |100 64 144 d d
5 5 005 ENQ (encuiry) 37 25 045 % % 69 45 105 &«#69; E |101 65 145 &#l01; e
6 6 006 ACK [(acknowledge) 38 26 046 & « 70 46 106 &«#70; F |102 66 146 &«#1l02; €
7 7 007 BEL (bell) 39 27 047 &«#39; ' 71 47 107 &«#71; G (103 67 147 g o
& 8 010 BE5 (backspace) 40 28 050 &«#40; | 72 48 110 &«#72; H |104 68 150 h h
9 9 011 TAE (horizontal tab) 41 29 051 &«#41;) 73 49 111 I I |105 69 151 i 1
10 A 0l2 LF (NL line feed, new line)| 42 2A 052 &«#42; * 74 4h 112 «#74; J |106 64 152 j]
1l B 013 VT (vertical tab) 43 2B 053 &«#43; + 75 4B 113 &«#75; K |107 6B 153 &«#107; K
12 C 014 FF (NP form feed, new page)| 44 2C 054 &«#44; , 76 4C 114 «#76; L |108 6C 154 l 1
13 D 015 CR (carriage return) 45 2D 055 - - 77 4D 115 M M |109 6D 155 m I
14 E 016 50 (shift out) 46 2E 056 . . 78 4E 116 N N |110 6E 156 n n
15 F 017 5I (shift in) 47 2F 057 / / 79 4F 117 O 0 |111 6F 157 &#ll1l1:; o
16 10 020 DLE (data link escape) 43 30 060 + 0 80 50 120 «#80; P |112 70 160 &#ll2: p
17 11 021 DC1l (device control 1) 49 31 061 1 1 81 51 121 «#381; 0 (113 71 161 q d
18 12 022 DCZ (dewvice control 2) 50 32 062 2 2 82 52 122 «#82; R |114 72 162 &«#l1ll4; ¢
19 13 023 DC3 (dewvice control 3) 51 33 063 3 3 83 53 123 «#83; 5 |115 73 163 s =
20 14 024 DC4 (device control 4) 52 34 064 4 4 84 54 124 «#84; T |116 74 164 &#ll6; ©
21l 15 025 NAK (negative acknowledge) 53 35 065 5 5 85 55 125 &«#85; U |117 75 165 u:; u
22 16 026 SYN (synchronous idle) 54 36 066 6 6 86 56 126 &«#386. V (118 76 166 &8; v
23 17 027 ETE (end of trans. block) 55 37 067 7 7 87 57 127 W W |119 77 167 w w
24 18 030 CAN (cancel) 56 38 070 8 8 88 58 130 «#88; X |120 78 170 &#l20; X
25 19 031 EM (end of medium) 57 39 071 9 9 89 59 131 Y ¥ |121 79 171 &#lz2l; ¥
26 1A 032 5UE (substitute) 58 3A 072 &«#58; : 90 S5A 132 «#90; Z (122 74 172 &«#l22; zZ
27 1B 033 ESC (escape) 59 3B 073 &«#59; ; 91 5B 133 &«#91; [|123 7B 173 { {
28 1C 034 F3 (file separator) 60 3C 074 < < 92 5C 134 &«#92; % |124 7C 174 &«#lz24;
29 1D 035 G5 (group sSeparator) 61 3D 075 l1; = 93 5D 135]] |125 7D 175 } }
30 1E 036 RS (record separator) 62 3E 076 > > 94 SE 136 &«#94; *~ |126 T7E 176 &#l26; ~
31 1F 037 US (unit separator) 63 3F 077 &«#63; 2 95 S5F 137 «#95; _ |127 7F 177 &«#127; DEL

Source: www.asciitable.com

23

Comparisons Within Sequence

* It makes sense to compare within a
sequence (lower case, upper case, digits).

—‘a <’b True
—'A'<'B" True
—"1"<'9" True
« Can be weird outside of the sequence:
—'‘a’ <'A’ False
_ —'a’<‘0’ False

24

Whole Strings

« Compare the first element of each string:

— if they are equal, move on to the next
character in each

— if they are not equal, the relationship between
those to characters are the relationship
between the string

— if one ends up being shorter (but equal), the
shorter is smaller

25

Examples

‘a<‘b True
e ‘aaab’ < ‘aaac’

— First difference is at the last char. ‘b’<'c’ so
‘aaab’ is less than ‘aaac’. True.

* ‘aa’ < ‘aaz’
— The first string is the same but shorter. Thus it
Is “smaller”. True.

26

Membership Operations

« Can check to see if a substring exists in
the string, the in operator. Returns True
or False

myStr = ‘aabbccdd’
‘a’ 1n myStr ¥ True
Wi True

‘" 1n myStr ¥ False

‘abb’ 1n myStr

27

Strings are Immutable

« Strings are immutable, that is you cannot
change one once you make it:
— aStr = ‘spam’
—aStr[1] = ‘1’ [¥])[¥] ERROR

 However, you can use it to make another

string (copy it, slice it, etc).

— newStr = aStr[:1] + ‘1> + aStr[2:]
—aStr ¥ ‘spam’

— newStr => ‘slam’

28

String Methods and
Functions

29

e Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

Functions, First Cut

* A function is a program that performs
some operation. Its details are hidden
(encapsulated), only its interface provided.

» A function takes some number of inputs
(arguments) and returns a value based on
the arguments and the function’s
operation.

30

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

String Function: Len

« The Len function takes as an argument a
string and returns an integer, the length of
a string.

myStr = ‘Hello World’
len(myStr) [¥] 11 # space counts

31

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserve d

String Method

A method is a variation on a function
— like a function, it represents a program

— like a function, it has input arguments and an
output

* Unlike a function, it is applied in the
context of a particular object.

* This is indicated by the ‘dot notation’
iInvocation

32

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

Example

® upper is the name of a method. It
generates a new string that has all upper
case characters of the string it was called
with.

myStr = ‘Python Rules!’
myStr.upper() [¥] ‘PYTHON RULES!’

* The string myStr called the upper()
method, indicated by the dot between them.

33

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

More Dot Notation

* In generation, dot notation looks like:
— object.method(...)

* |t means that the object in front of the dot
Is calling a method that is associated with
that object’s type.

* The methods that can be called are tied to

the type of the object calling it. Each type
has different methods.

34

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

Find

myStr = ‘hello’
myStr.find(‘1’) # find index of ‘' in myStr
Y] 2

Note how the method ‘find’ operates on the string object
myStr and the two are associated by using the “dot”
notation: myStr.find('l’).

Terminology: the thing(s) in parenthesis, i.e. the ‘I in this
case, Is called an argument.

35

Chaining Methods

Methods can be chained together.
* Perform first operation, yielding an object

» Use the yielded object for the next method

myStr = ‘Python Rules!’
myStr.upper() [¥] ‘PYTHON RULES!’

myStr.upper().find(‘0’)

36

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

Optional Arguments

Some methods have optional arguments:

* if the user doesn’t provide one of these, a
default is assumed

* find has a default second argument of O,
where the search begins
aStr = ‘He had the bat’

aStr.find(‘t’) M 7 # 1st ‘t’,start @
0

Str. find(‘t’,8) [13 # 20 ‘t’

37

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

Nesting Methods

* You can “nest” methods, that is, the result
of one method as an argument to another.

 Remember that parenthetical expressions
are done “inside out”: do the inner
parenthetical expression first, then the
next, using the result as an argument.

aStr.find(‘t’, aStr.find(‘t’)+1)

* Translation: find the second ‘t'.

38

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

How to Know?

* You can use IDLE to find available

methods for any type. You enter a variable
of the type, followed by the °." (dot) and
then a tab.

 Remember, methods match with a type.
Different types have different methods.

* |f you type a method name, IDLE will
remind you of the needed and optional

® 00

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>> myString
>>> myString.

Python Shell

apitalize
enter
ount
ecode
ncode
ndswith
xpandtabs

find

index

isalnum

0

Ln: 33 Col: 13

FIGURE 4.7 In IDLE, tab lists potential methods.

© 2011 Pearson Addison-Wesley. All rights reserved.

40

e OO0 *Python Shell*

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>> myString pJust
>>> myString.Y :

Ln: 33 Col: 14

FIGURE 4.8 In IDLE, tab lists potential methods, with leading letter.

41

© 2011 Pearson Addison-Wesley. All rights reserved.

>>>
>>>

>>> myString = 'abcd’
>>> myString.find(

FIGURE 4.9 IDLE pop-up provides help with function arguments and return types.

42

© 2011 Pearson Addison-Wesley. All rights reserved.

More Methods

(Even more exist: http://docs.python.org/lib/string-methods.html)

® 6 6 6 6 &6 & o o o
n no u u v nu v nu " n

S.
.center(width)
.count(sub,[,start [,end]])
.Ljust(width)

.lower()

.upper()

LstripQO

.rfind(sub, [,start [,end]])
.splitlines([keepends])

strip(Q)
.translate(table [, delchars]) 43

capitalize

String Formatting, Better Printing

* So far, we have just used the defaults of
the print function.

* We can do many more complicated things
to make that output “prettier” and more

pleasing.
« We will apply it to our “display” function.

45

Basic Form

* To understand string formatting, it is
probably best to start with an example:

print “Sorry, 1s this the %d minute
%s?” % (5, ‘ARGUMENT’)

prints Sorry, 1s this the 5 minute
ARGUMENT

46

separator

string indicated by quotes
|

Y \

print ‘Sorry, is this the %d minute %s?’ % (5,’ARGUMENT)

A

Sorry, is this the 5 minute ARGUMENT?

FIGURE 4.10 String formatting example.

47

© 2011 Pearson Addison-Wesley. All rights reserved.

Format String

* The format string contains a set of format
descriptors that describe how an object is
to be printed.

* QOverall:
%[name][flags][width][.precision]code

where [] are optional

48

Many Descriptors

%s string

%d decimal

%e floating point exponent
%f floating point decimal
%u unsigned integer

and others

49

Matching Object to Descriptor

* Objects are matched in order with format
descriptors. The substitution is made and
resulting string printed

print “%s 1s %d years old” % (“Bill”,25)

NN

prints Bill is 25 years old

50

print “%10s is %-10d years old.” % (“Bill’, 25)

t o

String 10 spaces wide Decimal 10 spaces wide

including the object including the object
right justified. “” means left justified.
OUTPUT:
Bill is 25 years old.

H_) Y
10 spaces 10 spaces

FIGURE 4.11 String formatting with width descriptors.

51

© 2011 Pearson Addison-Wesley. All rights reserved.

Precision

® print math.p1i
—3.14159265359
® print “%.4f” % math.pi

- 3.1416 (4 decimal points of precision, with
rounding)

® print “%10.2f” % math.p1

— 3.14 (10 spaces total including the
number and the decimal point

52

Iteration Through a Sequence

* To date, we have seen the while loop as a
way to iterate over a suite (a group of
python statements)

* We briefly touched on the for statement for
iteration, such as the elements of a list or
a string

54

for Statement

We use the for statement to process each
element of a list, one element at a time:

for 1tem 1n sequence:

sulte

55

What for means

myStr=*‘abc’
for myVar in ‘abc’:

print myVar
* first time through, myVar='a’ (myStr[0])
» second time through, myVar='b’ (myStr[1])
* third time through, myVar="'c’ (myStr[2])
* N0 More sequence left, we quit

56

Power of the for Statement

* Sequence iteration as provided by the for
statement is very powerful and very useful
in Python.

 Allows you to write some very “short”
programs that do powerful things.

57

Code Listing 4.1
Find a Letter

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

58

river = 'Mississippti’
target = raw_input('Input character to find: ')
for index in range(len(river)): #for each index

1f river[index] == target: #check
print "Letter found at index: ", 1index
break # stop searching
else:

print 'Letter',target, 'not found in',river

59

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

Code Listings 4.2-4.3
Letter plus Index

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

60

Enumerate Function

* The enumerate function prints out two
values: the index of an element and the
element itself

« Can use It to iterate through both the index
and element simultaneously, doing dual
assignment

61

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

print first occurrence
river = 'Mississippti’
target = raw_input('Input character to find: ')
for index,letter in enumerate(river):
1f letter== target: #check
print "Letter found at index: ", 1index

break # stop searching
else:

print 'Letter',target, 'not found in',river

62

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

print all occurrences
river = 'Mississippti’
target = raw_input('Input character to find: ')
for index,letter in enumerate(river):
1f letter== target: #check

print "Letter found at index: ", 1index
break # stop
else:

print 'Letter',target, 'not found in',river

63

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

Split Function

* The split function will take a string and break
it into multiple new string parts depending on
what the argument character is.

» By default, if no argument is provided, split is
on any whitespace character (tab, blank,
etc.)

* You can assign the pieces with multiple
assignment if you know how many pieces

64

Reorder a Name

origName = ‘John Marwood Cleese’
first,mid, last = origName.split()

name = last + ¢, ¢ + first + ¢ ¢ + mid
print name

65

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

Palindromes and the Rules

* A palindrome is a string that prints the
same forward and backwards

« Same implies that:
— case does not matter
— punctuation is ignored

« “Madam I'm Adam” is thus a palindrome

66

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

Lower Case and Punctuation

* Every letter is converted using the lower
method

* Import string, brings in a series of
predefined sequences (string.digits,
string.punctuation, string.whitespace)

* We remove all non-wanted characters with
the replace method. First arg is what to
replace, the second the replacement.

67

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

Code Listing 4.4
Palindromes

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

68

first part

import string

originalString = raw_input(‘Input a string:')
modifiedStr = originalString.lower()

badChars = string.whitespace +
string.punctuation

for char in modifiedStr:
if char in badChars: # remove bad
modifiedStr = modifiedStr.replace(char,")

69

The Practice of Computing Using Python, Punch, Enbody, ©2011 Pearson Addison-Wesley. All rights reserved

second part
If modifiedStr == modifiedStr[::-1]: # pal ?
print 'The original string is: %s\n\

t
t
T

ne modified string is: %s\n\
ne reversal is: %s\n\

ne string is a palindrome' %

(originalString, modifiedStr, modifiedStr[::-1])
else:
H

similar printing for not a palindrome

70

Example: Counting
Poker Hands

71

