
1 

The Practice of Computing Using 

PYTHON 
William Punch Richard Enbody 

Chapter 2 

Control 

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 



2 

Control: A Quick Overview 



3 

Selection 



4 

Selection 

•  Selection is how programs make choices, 
and it is the process of making choices 
that provides a lot of the power of 
computing 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



5 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



6 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



7 

Relational Operators 

•  Less than: < 
•  Greater than: > 
•  Equal to: ==       (Not the same as =) 
•  Not equal to: != 
•  Less than or equal to: <= 
•  Greater than or equal to: >= 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



8 

Python if Statement 

•  if boolean expression : 
•   suite 

•   evaluate the boolean (True or False) 
•   if True, execute all statements in the suite 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



9 

Warning About Indentation 

•  Elements of the “suite” must all be 
indented the same number of spaces/tabs 

•  Python only recognizes suites when they 
are indented the same “distance” 

•  You must be careful to get the indentation 
right to get suites right. 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



10 

Python Selection, Round 2 

if boolean expression:   
  suite1 

else: 
  suite2 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  

The process is: 
•  evaluate the boolean 
•  if True, run suite1 
•  if False, run suite2 



11 

Safe Lead in Basketball 

•  Algorithm due to Bill James 
(www.slate.com) 

•  under what conditions can you safely 
determine that a lead in a basketball game 
is insurmountable? 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



12 

The Algorithm 

•  Take the number of points one team is 
ahead 

•  Subtract three 
•  Add ½ point if team that is ahead has the 

ball, subtract ½ point otherwise 
•  Square the result 
•  If the result is greater than the number of 

seconds left, the lead is safe 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



13 

Code Listing 2.5 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



14 

# 3. Add a half-point if the leading team has the ball, 
#    subtract a half-point if the other team has the ball. 
 
has_ball = raw_input("Does the lead team have\ 
                                    the ball (Yes or No): ") 
 
if has_ball == 'Yes': 
    points = points + 0.5 
else: 
    points = points - 0.5 



15 

Code Listing 2.6 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



16 

# 3. Add a half-point if the leading team has the ball, 
#    subtract a half-point if the other team has the ball. 
 
has_ball = raw_input("Does the lead team have\ 
                                    the ball (Yes or No): ") 
if has_ball == 'Yes': 
    points = points + 0.5 
else: 
    points = points - 0.5 
 
# numbers less than 0 become 0 
if points < 0: 
    points = 0 



17 

Code Listing 2.8 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



18 

# 5. If the result is greater than the number of seconds  
# left in the game, the lead is safe. 
seconds = int(raw_input("Enter the number of\ 
                       seconds remaining: ")) 
 
if points > seconds: 
    print "Lead is safe." 
else: 
    print "Lead is not safe." 



19 

Repetition: A Quick Overview 



20 

Repeating Statements 

•  Besides selecting which statements to 
execute, a fundamental need in a program 
is repetition 
–  repeat a set of statements under some 

conditions 
•  With both selection and repetition, we 

have the two most necessary 
programming statements 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



21 

While and For Statements 

•  The while statement is the more general 
repetition construct. It repeats a set of 
statements while some condition is True. 

•  The for statement is useful for iteration, 
moving through all the elements of data 
structure, one at a time. 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



22 

while Loop 
•  Top-tested loop (pretest) 

–  test the boolean before running 
–  test the boolean before each iteration of 

the loop 
 

while boolean expression: 
 statementSuite 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



23 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



24 

Repeat While the Boolean is True 

•  while loop will repeat the statements in the 
suite while the boolean is True (or its 
Python equivalent) 

•  If the boolean expression never changes 
during the course of the loop, the loop will 
continue forever. 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



25 

Code Listing 2.10 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



26 

# simple while 
x_int = 0     # initialize loop-control variable 
 
# test loop-control variable at beginning of loop 
while x_int < 10: 
    print x_int,           # print x_int each time 
    x_int = x_int + 1  # change loop variable 
 
# bigger than value printed in loop! 
print 
print "Final value of x_int: ", x_int 
 



27 

General Approach to a While 

•  outside the loop, initialize the boolean 
•  somewhere inside the loop you perform 

some operation which changes the state 
of the program, eventually leading to a 
False boolean and exiting the loop 

•  Have to have both! 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



28 

For and Iteration 

•  One of Python’s strength’s is it’s rich set of 
built-in data structures 

•  The for statement is a common statement 
for manipulation of a data structure 
–  for each element in the datastructure 

•  perform some operation on that element 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



29 



30 

Perfect Number Example 



31 

A Perfect Number 

•  numbers and their factors were mysterious to the 
Greeks and early mathematicians 

•  They were curious about the properties of 
numbers as they held some significance 

•  A perfect number is a number whose sum of 
factors (excluding the number) equals the 
number 

•  First perfect number is: 6 (1+2+3) 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



32 

Abundant, Deficient 

•  abundant numbers summed to more than 
the number. 
– 12: 1+2+3+4+6 =16 

•  deficient numbers summed to less than 
the number. 
– 13: 1 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



33 

Design 

•  prompt for a number 
•  for the number, collect all the factors 
•  once collected, sum up the factors 
•  compare the sum and the number and 

respond accordingly 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



34 

Code Listing 2.13 
Check Perfection 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



35 

if theNum == sumOfDivisors: 
    print theNum,"is perfect" 
else: 
    print theNum,"is not perfect" 
 



36 

Code Listing 2.14 
Finding Factors 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



37 

divisor = 1 
sumOfDivisors = 0 
while divisor < theNum: 
    if theNum % divisor==0:   # divisor evenly        
                                              # divides theNum 
        sumOfDivisors = sumOfDivisors + divisor 
    divisor = divisor + 1 



38 

Improving the Perfect  
Number Program 

Work with a range of numbers 
For each number in the range of numbers: 
•  collect all the factors 
•  once collected, sum up the factors 
•  compare the sum and the number and 

respond accordingly 
Print a summary 
 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



39 

Code Listing 2.16 
Examine a Range of 

Numbers 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



40 

topNumStr = raw_input("What is the upper\                   
                                       number for the range:") 
topNum = int(topNumStr) 
theNum=2 
while theNum <= topNum: 
    # sum the divisors of theNum 
    # classify the number based on its divisor 
sum 
    theNum += 1 



41 

Code Listing 2.18 
(Focus on Number 

Classification) 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



42 

topNum = raw_input(”Upper range number:") 
topNum = int(topNum) 
theNum=2 
while theNum <= topNum: 
   # sum up the divisors, see Code Listing 2.17 
   # classify the number based on its divisor sum 
    if theNum == sumOfDivisors: 
        print theNum,"is perfect" 
    if theNum < sumOfDivisors: 
        print theNum,"is abundant" 
    if theNum > sumOfDivisors: 
        print theNum,"is deficient" 
    theNum += 1 



43 

Control In Depth 



44 

Booleans 



45 

Boolean Expressions 

•  George Boole’s (mid-1800’s) mathematics 
of logical expressions 

•  Boolean expressions (conditions)      
have a value of True or False 

•  Conditions are the basis of choices in a 
computer, and, hence, are the basis of the 
appearance of intelligence in them. 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



46 

What is True, and What is False 
•  true: any nonzero number or nonempty 

object. 1, 100, “hello”, [a,b] 
•  false: a zero number or empty object. 0, “”,

[ ] 
•  Special values called “True” and “False”, 

which are just standins for 1 and 0. 
However, they print nicely (True or False) 

•  Also a special value, “None”, less than 
everything and equal to nothing 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



47 

Boolean Expression 

•  Every boolean expression has the form: 
– expression booleanOperator expression 

•  The result of evaluating something like the 
above is also just true or false. 

•  However, remember what constitutes true 
or false in Python! 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



48 

Relational Operators 

•  In Python 2.x, you can compare different 
types and get an answer 
–  just don’t do it! Weird answers (fixed in 3.x) 

•  Relational Operators have low preference 
•  5 + 3 < 3 – 2 
•  8 < 1 
•  False 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



49 

Examples 

•  If the value of integer myInt is 5,  
then the value of expression myInt < 7 is  
– True 

•  If the value of char myChar is 'A',  
then the value of expression myChar == 
'Q' is  
– False 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



50 

What Does Equality Mean? 

•  Two senses of equality 
•  two variables refer to objects with the 

same values 
•  two variables refer to the same object. The 

id() function used for this. 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



51 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



52 

Chained Comparisons 

•  In python, chained comparisons work just 
like you would expect in a mathematical 
expression: 

•  Given myInt has the value 5 
– 0 <= myInt <= 5 
– True 
– 0 < myInt <= 5 > 10 
– False 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



53 

Pitfall 

•  Be careful of floating point equality 
comparisons, especially with zero, e.g. 
myFloat==0.  Use the converse “!=“ 
whenever possible. 

•  Result = 2/2.0000000000000001 
•  Result == 1.0 

– True 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



54 

Compound Expressions 

•  Logically 0 < X < 3 is actually 
(0 < X) and (X < 3) 

•  Logical Operators (lower case) 
– and 
– or 
– not 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



55 

 
 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  

Truth Tables 

p q not p p and q p or q 

True True    

True False    

False True    

False False    
 

 



56 

 
 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  

Truth Tables 

p q not p p and q  p or q  

True True False   

True False False   

False True True   

False False True   
 

 



57 

 
 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  

Truth Tables 

p q not p p and q p or q 

True True  True  

True False  False  

False True  False  

False False  False  
 

 



58 

 
 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  

Truth Tables 

p q not p p and q p or q 

True True   True 

True False   True 

False True   True 

False False   False 
 

 



59 

Truth Tables 

p q not p p and q  p or q  

True True False True True 

True False False False True 

False True True False True 

False False True False False 
 

 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



60 

Compound Evaluation 
•  Logically 0 < X < 3 is actually 

(0 < X) and (X < 3) 
•  Evaluate using X with a value of 5:    

(0< X) and (X< 3) 
•  Parenthesis first: (True) and (False) 
•  Final value: False  

•  (Note: parentheses are not necessary in 
this case.) 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



61 

Precedence & Associativity 

•  Relational operators have precedence and 
associativity just like numerical operators.  

•  See Table 2.2 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



62 

Booleans vs. Relationals  

•  Relational operations always return True 
or False 

•  Booleans are different in that: 
– They can return values (that represent True or 

False) 
– They have “short circuiting” 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



63 

Remember! 

•  0, ‘’,[ ] or other “empty” objects are 
equivalent to False 

•  anything else is equivalent to True 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



64 

Ego Search on Google 

•  Google search uses Booleans 
•  by default, all terms are and’ed together 
•  you can specify or (using OR) 
•  you can specify not (using -) 
•  Example is: 

–  ‘Punch’ and (‘Bill’ or ‘William’) and not ‘gates’ 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



65 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



66 

More on Assignments 



67 

Remember Assignments? 

•  Format: lhs = rhs 
•  Behavior: 

– expression in the rhs is evaluated producing a 
value 

–  the value produced is placed in the location 
indicated on the lhs 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



68 

Can do Multiple Assignments 

•  x, y = 2, 3   # assigns x=2 and y=3 
•  print x, y     # prints 2  3 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



69 

Swap 

•  Initial values: X is 2, Y is 3 
•  Behavior: swap values of X and Y 

– Note: X=Y Y=X doesn’t work 
–  introduce extra variable “temp” 

•  temp = X   // save X’s value in temp 
•  X=Y          // assign Y’s value to X 
•  Y=temp    // assign temp’s value to Y 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



70 

Swap Using Multiple Assignment 

•  x, y = 2, 3 
– print x, y        # prints 2  3 

•  x, y = y, x   
– print x, y         #prints 3  2 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



71 

Chaining 

•  x = y = 5 
•  print x, y    # prints 5  5 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



72 

More Control: Selection 



73 

Compound Statements 

•  Compound statements involve a set of 
statements being used as a group 

•  Most compound statements have: 
– a header, ending with a “:” 
– a “suite” of statements to be executed 

•  if, for, while are examples of compound 
statements 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



74 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



75 

Have Seen 2 Forms of Selection 

if boolean expression: 
    suite 
 
if boolean expression: 
    suite 
else: 
    suite 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



76 

if boolean expression1: 
  suite1                

elif boolean expression2: 
  suite2 

(as many elif’s as you want) 
else: 

  suiteLast 

Python Selection, Round 3 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



77 

if, elif, else, the Process 

•  evaluate boolean expressions until: 
–  the boolean expression returns True 
– none of the boolean expressions return True 

•  if a boolean returns True, run the 
corresponding suite. Skip the rest of the if 

•  if no boolean returns True, run the else 
suite, the default suite 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



78 

Code Listing 2.20 
Updated Perfect 

Number classification 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



79 

 # classify the number based on its divisor sum 
    if theNum == sumOfDivisors: 
        print theNum,"is perfect" 
    elif theNum < sumOfDivisors: 
        print theNum,"is abundant" 
    else: 
        print theNum,"is deficient" 
    theNum += 1 



80 

More Control: Repetition 



81 

While Loop, Round Two 

•  while loop, oddly, can have an associated 
else statement 

•  else statement is executed when the loop 
finishes under normal conditions 
– basically the last thing the loop does as it exits 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



82 

While with Else 

while booleanExpression: 
 suite 
 suite 
else: 
 suite 
 suite 
rest of the program 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



83 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



84 

Break Statement 

•  A break statement in a loop, if executed, 
exits the loop 

•  It exists immediately, skipping whatever 
remains of the loop and the else statement 
(if it exists) of the loop 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



85 

Code Listing 2.21 
Essential Part of the 

Guessing Game 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



86 

# while guess is range, keep asking 
while 0 <= guess <= 100: 
    if guess > number:  
        print "Guessed Too High."  
    elif guess < number:  
        print "Guessed Too Low."  
    else:                # correct guess, exit with break 
        print "You guessed it. The number was:",number 
        break 
    # keep going, get the next guess 
    guessString = raw_input("Guess a number: ")  
    guess = int(guessString)  
else:  
    print "You quit early, the number was:",number 

 



87 

Continue Statement 

•  A continue statement, if executed in a 
loop, means to immediately jump back to 
the top of the loop and re-evaluate the 
conditional 

•  Any remaining parts of the loop are 
skipped for the one iteration when the 
continue was exectued 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



88 

Code Listing 2.22 
Part of the Guessing 
Numbers Program 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



89 

# Stop if a period (.) is entered 
while theNumStr != "." :  
    if  not theNumStr.isdigit():         # not a 
number, an error 
        print "Error, only numbers please" 
        theNumStr = raw_input("Number:") 
        continue     # if the number is bad, ignore it 
    theSum += int(theNumStr) 
    theNumStr = raw_input("Number:") 



90 

Change in Control: Break and 
Continue 

•  While loops are easiest read when the 
conditions of exit are clear 

•  Excessive use of continue and break 
within a loop suite make it more difficult to 
decide when the loop will exit and what 
parts of the suite will be executed each 
loop. 

•  Use them judiciously. 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



91 

While Overview 

while test1: 
 statement_list_1 
 if test2:  break         # Exit loop now; skip else 
 if test3:  continue     # Go to top of loop now 
 # more statements 

else: 
    statement_list_2      # If we didn’t hit a ‘break’ 
 
# ‘break’ or ‘continue’ lines can appear anywhere 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



92 

Range and for Loop 



93 

Range Function 
•  The range function generates a sequence 

of integers 
•  range(5) => [0, 1, 2, 3, 4] 

– assumed to start at 0 
– goes up to, but does not include, the 

provided number argument. 
•  range(3,10) => [3, 4, 5, 6, 7, 8, 9] 

–  first argument is the number to begin with 
– second argument is the end (not included!) 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



94 

Iterating Through the Sequence 

for num in range(1,5): 
    print num  
•  range generates the sequence [1, 2, 3, 4] 
•  for loop assigns num each of the values in 

the sequence, one at a time in sequence 
•  prints each number (one number per line) 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



95 

Hailstone Example 



96 

Collatz 

•  The Collatz sequence is a simple 
algorithm applied to any positive integer 

•  In general, by applying this algorithm to 
your starting number you generate a 
sequence of other positive numbers, 
ending at 1 

•  Unproven whether every number ends in 1 
(though strong evidence exists) 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



97 

Algorithm 

while the number does not equal one 
•  If the number is odd, multiply by 3 and add 

1 
•  If the number is even, divide by 2 
•  Use the new number and reapply the 

algorithm 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



98 

Even and Odd 

Use the remainder operator 
•  if num % 2 == 0:   # even 
•  if num % 2 == 1:   # odd 
•  if num %2:            # odd (why???) 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  



99 

The Practice of Computing Using Python, Punch, Enbody, © 2011 Pearson Addison-Wesley. All rights reserved  

Code Listing 2.26 
Hailstone Sequence, 

Loop 



100 

 while num > 1:  # stop when the sequence reaches 1  
    if num%2:        # num is odd  
        num = num*3 + 1  
    else:            # num is even  
        num = num/2  
    print num,",",   # add num to sequence  
  
    count +=1        # add to the count  
  
else:  
    print    # blank line for nicer output  
    print "Sequence is ",count," numbers long"  

 


