
CHAPTER 1

Introduction

2

Microprocessor

§Silicon chip that contains a
central processing unit (CPU).
§ The “Brain” of all personal computers,

most workstations, and a great number of
digital devices.
§ In charge of program execution.
§ It can be RISC or CISC.

3

Bus
Connections

CPU Memory I/O

Address Bus

Data Bus

Control Bus

4

Bus Connections (continued)

§ A processor communicates with the system’s
memory and I/O circuits by means of signals
that travel through a set of cables or
connections known as buses.
§ Address Bus: Holds the memory address that will be

accessed.
§ Data Bus: Holds the piece of data to read or write.
§ Control Bus: Indicates the operation to be done

(read or write).

5

CPU Instructions

§Each instruction has:
§ an opcode (operation code), that

indicates which operation to perform.
§ zero o more operands, which may be

registers, constants or memory
locations.

6

Fetch-Execute Cycle

§ Fetch:
1. Fetch an instruction from memory.
2. Decode the instruction to determine the

operation.
3. Fetch data from memory if necessary.

§Execute:
4. Perform the operation on the data.
5. Store the result in memory if needed.

7

RISC: Reduced
Instruction Set
Computer
§Microprocessor that uses a relatively

small number of fast but simple
instructions.
§Cheaper to design and produce because

they require less transistors.
§Mainly used in workstations.

8

CISC: Complex
Instruction Set
Computer
§Microprocessor that uses a significantly

large amount of complex (specialized)
instructions.
§Mainly used for Intel’s x86 architecture.

9

Programming Languages

Hardware

Machine Code

Assembly Language

High Level Language

10

Machine Code

§ Lowest level programming
language.
§ Each CPU instruction is

represented as an opcode, which
is an unsigned integer number.
§ Only language that the computer

really understands.
§ Difficult to understand by human

beings.

11

Machine Code Example

§ The opcode for adding one to the
accumulator in the Intel x86 is:

01000000b
or

0x40

12

Assembly
Language
§Same instruction set as

machine code.
§Each opcode is replaced by

a symbolic name.
§ Less cryptic for human

beings.

13

Assembly Language Example

§ The Intel x86 assembly language
instruction that adds one to the
accumulator is:

inc eax

14

Assembler

§ In order to execute a
program written in
assembly language, it
first has to be translated
to machine code using a
special program called
an assembler.

Assembler

0x40

inc eax

15

High Level Language

§ Has less primitive instructions
than assembly language and
machine code.
§ Program text is much more like

natural language.
§ Easier to understand by human

beings.
§ Examples: FORTRAN, LISP,

COBOL, BASIC and C.

16

Compiler

§A program
written in a high
level language
may be
translated to
machine code
using a
compiler.

Compiler

cmp esi,0
jne .L1
add esi,5

.L1

if(x == 0)
x = x + 5;

Assembler

0x81FE00000000
0x7506
0x81C605000000

17

Interpreter

§An interpreter
translates a high level
language program to
an intermediate form
that is subsequently
executed by a virtual
machine.

Interpreter

Intermediate Form

IF X = 0 THEN
X = X + 5

Virtual Machine

Translator

18

Assembly Language
Advantages

§Program execution speed.
§Executable code size.
§ “Bare bones” programming:
§ special instructions (FPU, MMX)
§ I/O ports
§ special CPU modes of operation

19

Assembly Language
Disadvantages

§Error prone.
§ Long and tedious to write.
§Difficult to understand and modify.
§Strongly tied to a specific computer

architecture.

20

Commonly Used
Assembly Language
Applications

§Operating Systems
§Device Drivers
§Communication Software
§Real Time Systems
§Embedded Systems
§Graphics

21

Reasons for
Studying Assembly
Language

§ To understand some of the low level details of
how a real computer operates.
§ To get to know some technologies that can only

be adequately understood using assembly
language.
§ To obtain a better appreciation of the inner-

workings of a compiler.

22

Computer
Science
(ISC) Computer

Engineering
(ISE)

Programming
Languages

Course

What’s next?

Microprocessors
Course

Assembly Language
Course

CHAPTER 2

The Intel x86
Architecture

24

Moore’s
Law

§ In 1965, Intel’s
co-founder
Gordon Moore,
made the
following
observation:

Approximately
every 18 months
microchips
duplicate their
power, while
their cost
stays roughly
the same.

25

10M

1M

100K

10K

0

1970 1975 1980 1985 1990 1995 2000

tr
an

si
st

o
rs

Intel Processors
year

4004
8080

8086

80286
80386

80486
P5

P6

P7

26

4004 (1971)

§ First microprocessor.
§Built by Intel for Busicom

calculators.
§ 4-bit registers.
§ 108 kHz.
§ 2,300 transistors.

27

8080 (1974)

§Used in the MITS Altair 8800, the first
commercial personal computer.
§ 8-bit registers.
§ 16-bit address bus.
§ 2 MHz.
§ 6,000 transistors.

28

8086/8088 (1978)

§Used in the original IBM PC.
§ First 16-bit microprocessor.
§ 20-bit address bus.
§ 16-bit (8086) and 8-bit (8088) data bus.
§ 4.77+ MHz.
§ 29,000 transistors.

29

80286 (1982)

§Used in the original IBM PC/AT.
§ 24-bit address bus.
§ 16-bit data bus.
§ 6+ MHz.
§ 134,000 transistors.
§Multitasking, protected mode and virtual

memory.

30

80386 (1985)

§ 32-bit registers.
§ 32-bit address bus.
§ 32-bit data bus.
§Pipelining.
§ 16+ MHz.
§ 275,000 transistors.

31

P4: 80486 (1989)

§Better execution speed.
§ Integrated floating point unit (FPU).
§ 8 KB L1 cache.
§ 25+ MHz.
§ 1’200,000 transistors.

32

P5: Pentium (1993)

§ 64-bit data bus.
§ 8 KB L1 cache for data and 8 KB for code.
§Dual pipeline for integer operations.
§ 60+ MHz.
§ 3’100,000 transistors.

33

P6: Pentium Pro (1995)

§ 36-bit address bus.
§ 256 KB L2 cache.
§Superpipelining.
§Speculative and out of

order execution.
§ 150+ MHz.
§ 5’500,000 transistors.

34

P55C: Pentium MMX (1997)

§Classic Pentium with MMX
technology: 64-bit SIMD
multimedia and
communication extensions.
§ 16 KB L1 cache for data and

16 KB for code.
§ 166+ MHz.
§ 4’500,000 transistors.

35

Klamath: Pentium II (1997)

§Pentium Pro with MMX
technology.
§ 16 KB L1 cache for

data and 16 KB for
code.
§ 512 KB L2 cache.
§ 233+ MHz.
§ 7’500,000 transistors.

36

New P6 processors

§Pentium II Xeon (“Pentium II on steroids”)
§ L2 cache runs at full processor speed.
§ Designed for the computer server market.

§Celeron (“the Castrated One”)
§ Pentium II with no L2 cache.
§ Designed for the sub-$1,000 PC market.

37

Katmai: Pentium III (1999)

§Pentium II with 128-bit SIMD floating point
oriented extension to the MMX
technology.
§Processor serial number in order to

“enhance security”.
§ 450+ MHz.

38

Merced: Itanium (2000)

§ Intel Architecture-64 (IA-64).
§Developed jointly by Intel and Hewlett-

Packard.
§Hardware x86 emulation.
§Not RISC or CISC, but EPIC (Explicitly

Parallel Instruction Computing).
§ 600 MHz and 1,000 MHz.
§ Tens of millions of transistors.

39

x86 Basic Structure

Code Cache

Data Cache

Registers

Execution Unit

Decode & Prefetch Unit

Branch
Predictor

Floating
Point
Unit

Bus
Interface

To RAM
Integer ALU

40

x86 Basic Structure (continued)

§ Execution unit: two parallel integer pipelines
enable the CPU to read, interpret, execute and
dispatch two instructions simultaneously.
§ Branch Predictor: The branch prediction unit

tries to guess which sequence will be executed
each time the program contains a conditional
jump, so that the Prefetch and Decode Unit can
get the instructions ready in advance.

41

x86 Basic Structure (continued)

§ Floating Point Unit: Third execution unit,
where non-integer calculations are performed.
§ Primary Cache: Two on-chip caches, one for

code and one for data, are far quicker than the
external memory.
§ Bus Interface: This brings a mixture of code

and data into the CPU, separates the two ready
for use, and then recombines them and sends
them back out.

42

x86 Modes of
Operation
§ The operating mode determines

which instructions and
architectural features are
accessible.
§ The Intel Architecture supports

three operating modes:
§ Real Mode
§ Protected Mode
§ Virtual-8086 Mode

43

Real Mode

§Mode in which all x86 processors boot.
§ The CPU works like a very fast 8086.
§Can only access up to 1 MB of memory.
§Only one task is executed at a time.

44

Protected Mode

§Allows multitasking.
§Each program has its own memory

protected from other programs.
§Extended memory: more than 1 MB of

memory available.
§Supports virtual memory.

45

Virtual-8086 Mode

§Allows simultaneous execution of two or
more programs designed to work in real
mode, each program having up to 1 MB of
independent memory.

46

Registers
§A register is a special high-speed storage

area within the CPU.
§ The x86 processors have several registers

available for the application programmer,
grouped as follows:
§ General-purpose data registers.
§ Segment registers.
§ Status and control registers (EIP and

EFLAGS registers).

47

General-Purpose Data Registers

§ These eight 32-bit registers are available
for holding the following data items:
§ Integer operands for logical and arithmetic

operations.
§ Pointers (memory addresses).

48

eax
ax

ah al
Accumulator

ebx
bx

bh bl
Base

ecx
cx

ch cl
Count

edx
dx

dh dl
Data

081631

General-Purpose Data Registers (continued)

49

esp
sp Stack Pointer

01631

ebp
bp Base Pointer

esi
si Source Index

edi
di Destination Index

General-Purpose Data Registers (continued)

50

Segment Registers

§ The six segment registers hold 16-bit segment
selectors.
§ A segment selector points to a special

structure in memory called a segment
descriptor. Several segment descriptors are
grouped together into a descriptor table.
§ A segment descriptor contains addressing and

control information which is used to control how
a 32-bit linear address is generated.

51

cs Code Segment

016

ds Data Segment

es Extra Segment

fs Extra Segment

gs Extra Segment

ss Stack Segment

Segment Registers (continued)

52

Segment Registers (continued)

Segment Selector

Memory

Segment
Register Segment

Descriptor

Segment
Descriptor

Segment
Descriptor

Segment
Descriptor

. . .

Descriptor
Table

Segment Information:

• Base address
• Size
• Privilege Level:

- private OS function
- OS service
- device driver
- application program

• Type:
- read-only
- read/write
- execute-only
- execute/read

53

Instruction Pointer Register

§ The instruction pointer (EIP) is a 32-bit
register that contains the offset in the
current code segment for the next
instruction to be executed.

eip Instruction Pointer

01631

54

Instruction Pointer Register (continued)

§ It is advanced from one instruction
boundary to the next in straight-line code
or it is moved ahead or backwards by a
number of instructions when executing
flow control instructions such as jumps or
subroutine calls.
§ It cannot be accessed directly by software.

55

Flags Register

§ This 32-bit register is a
collection of individual status
and control bits called flags.
§Each flag is usually

manipulated independently
and not as a set.

56

Flags Register (continued)

§ CF carry flag
§ PF parity flag
§ AF auxiliary flag
§ ZF Zero Flag

§ SF sign flag
§ DF direction flag
§ OF overflow flag

...
11

of df
10

sf
7

zf
6

af
4

pf
2

cf
031

eflags

57

Flags Register (continued)
§ Carry Flag Is set if the result of an arithmetic

operation involving unsigned numbers
overflows.
§ Overflow Flag Is set if the result of an

arithmetic operation involving signed numbers
overflows.
§ Sign Flag Is set if the result of an arithmetic or

logical operation is negative.
§ Zero Flag Is set if the result of an arithmetic or

logical operation is zero.

58

Flags Register (continued)

§ Parity Flag Is set if the result of an arithmetic or
logical operation has an even number of 1 bits
in its 8 least significant bits.
§ Auxiliary Flag Is set if the result of an arithmetic

operation has a carry out from the low-order
nibble. Used in binary-coded decimal (BCD)
operations.
§ Direction Flag Is explicitly set or cleared by the

programmer in order to modify the behavior of
some special string operations.

59

Memory
Organization
§ The memory that the processor

addresses on its bus is called
physical memory.
§Physical memory is organized as a

sequence of 8-bit bytes. Each byte is
assigned a unique address, called a
physical address.

60

Memory Organization (continued)

§ The physical address space ranges from
zero to a maximum of 232 – 1 (4 GB).
§When employing the processor’s memory

management facilities, programs DO NOT
directly address physical memory.
Instead, they access memory using a
memory model.

61

Flat Memory Model

§ Memory appears to a program as a
single, continuous address space,
called a linear address space. All
code and data are contained in this
address space.

62

...

0xFFFFFFFF

0x00000000

Linear
Address
Space

Flat Memory Model (continued)

§ The linear
address space
is byte
addressable,
with addresses
running
contiguously
from 0 to 232 - 1.

63

Paging

§ The x86 supports translation of linear
(virtual) addresses into physical
addresses through paging.
§ Special tables map portions of the

virtual addresses into physical memory
locations.
§ Physical memory is divided into page

frames, each 4 KB in size.
§ The operating system copies a certain

number of pages from your storage
device to main memory.

64

Physical Memory

Address
Space

Virtual
Memory

Disk Drive

Paging (continued)

§ When a program needs a page that is not in main
memory, the operating system copies the required page
into memory and copies another page back to the disk.
§ Each time a page is needed that is not currently in

memory, a page fault occurs.

65

Generating a Physical Address

16-bit selector 32-bit offset

Logical Address

Segment
Descriptor

+ 32-bit linear address

Paging

32-bit physical address

66

32-bit Offset

32-bit base register

32-bit index register

scale factor

eax, ebx, ecx, edx,
esi, edi, ebp, esp

eax, ebx, ecx, edx,
esi, edi, ebp

1, 2, 4, 8∗+

displacement+ 8-bit, 32-bit

32-bit offset

67

32-bit Offset Example

MOV EAX, [ESI + ECX * 4 + 12]

base
register

index
register

scale
factor

displacement

68

Byte Order

§When a value is stored in
memory in multiple bytes, two
distinct byte orders may be used:
§Big-Endian
§Little-Endian

Big End Little end

69

Byte Order (continued)

§ In big-endian architectures, the leftmost bytes
(those with a lower address) are most
significant. In little-endian architectures, the
rightmost bytes are most significant.
§ The terms big-endian and little-endian are

derived from the Lilliputians of Jonathan Swift's
Gulliver's Travels, whose major political issue
was whether soft-boiled eggs should be opened
on the big side or the little side.

70

Byte Order (continued)

§ Intel x86 and DEC VAX systems store
multibyte values in little-endian order.
§HP, IBM and Motorola 68K systems store

multibyte values in big-endian order.
§ The Power PC is a bi-endian processor: it

supports both big and little-endian byte
ordering.

71

00000001b
00000100b
00000000b
00000000b

00
01
02
03

00000000b
00000000b
00000100b
00000001b

00
01
02
03

little-endian big-endian

Byte Order Example

§ The byte ordering for the number 1025
stored in 4 bytes is:

Address

1025 = 00000000 00000000 00000100 00000001b

CHAPTER 3

The Linux Operating
System

73

Operating
System
§Software that makes

hardware usable.
§Manages such things

as: memory, screen
display, keyboard
input, disk files and
printer output.

User

Application
Programs

Operating
System

Hardware

74

UNIX

§Operating system developed at Bell
Labs in the early 1970s by Ken Thompson
and Dennis Ritchie.
§ First operating system to be written in a

high-level programming language, namely
C.

75

UNIX (continued)

§ The name UNIX was intended as a pun on
a previous OS called MULTICS (and was
written UNICS at first: UNiplexed
Information and Computing System).
§ Leading operating system for workstations

76

Linux
§ Free UNIX-type operating

system originally created by
Linus Torvalds at the
University of Helsinki in
Finland.
§Developed under the GNU

General Public License, the
source code for Linux is
freely available to everyone.

77

Linux (continued)

§ Linux is an independent POSIX
implementation and includes: multitasking,
multi-user, multiprocessing, virtual
memory, shared libraries and TCP/IP
networking.
§Currently implemented in a wide range of

platforms, including: x86, Alpha, SPARC,
68K and PowerPC.

78

§ Short for GNU's Not UNIX.
§ A UNIX-compatible software

system developed by the Free
Software Foundation (FSF).
§ The philosophy behind GNU is to produce software that

is non-proprietary. Anyone can download, modify and
redistribute GNU software. The only restriction is that
they cannot limit further redistribution.
§ The GNU project was started in 1983 by Richard

Stallman at the MIT.

GNU Project

79

POSIX
§Acronym for Portable

Operating System
Interface for UNIX.
§Set of IEEE and ISO

standards that define
an interface between programs
and operating systems.
§Supported by most UNIX systems

and Windows NT.

80

Multitasking

§ The ability to execute more
than one task (program) at
the same time.
§ The CPU switches from one program to

another so quickly that it gives the
appearance of executing all of the
programs at the same time.

81

Multitasking (continued)
§ There are two basic types of multitasking:
§ Preemptive multitasking: the operating

system assigns CPU time slices to each
program.
§ Cooperative multitasking: each program

can control the CPU for as long as it needs it.
If a program is not using the CPU, however, it
can allow another program to use it
temporarily.

§ Linux supports preemptive multitasking.

82

Multi-user

§Computer systems that
support two or more
simultaneous users.
§All mainframes and

minicomputers and most
workstations are multi-user
systems.

83

Multiprocessing

§Since version 2.0, Linux
has the ability to run in
multiprocessor
architectures.
§ The OS can distribute

several applications in
true parallel fashion
across several CPUs.

84

Virtual Memory

If it’s there and you can see it − it’s real
If it’s not there and you can see it − it’s virtual
If it’s there and you can’t see it − it’s transparent
If it’s not there and you can’t see it − you erased it!

IBM poster explaining virtual memory,
circa 1978.

85

Virtual Memory (continued)

§ Technique that allows to increases the
amount of apparent memory available on
a system.
§A swap space is an area on disk in which

the OS stores images of running programs
when memory is tight.
§ The Linux virtual memory system uses a

swap space to implement paging.

86

Shared Libraries
§ A library is a collection of

precompiled routines that
a program can use.
§ In a static library, all library functions that a

program requires are made part of an
executable, which can make it rather large.
§ In a shared library, function code is not directly

included in an executable file. Instead, the OS
dynamically links a running program to the
required routines contained in the shared library.

87

Shared Libraries (continued)

§Shared libraries have two important
advantages:
§ Small executable files.
§ Several programs running at the same time

can share a single copy of the library code.

88

TCP/IP Networking

§Acronym for
Transmission Control
Protocol/Internet Protocol.
§Consists of a suite of communications

protocols used to connect hosts on the
Internet.
§Allows services such as: e-mail, telnet, ftp

and http.

CHAPTER 4

The Netwide
Assembly Language

90

nasm: The Netwide Assembler

§ Free and portable x86 assembler
originally developed by Simon Tatham
and Julian Hall.
§ It supports a range of object file formats,

including Linux ELF, NetBSD/FreeBSD,
COFF, Microsoft 16-bit OBJ and Win32.

91

Development Cycle

editor

assembly
language

file
*.asm

nasm

object
file
*.o

ELF
executable

file

ld (linker)

92

ld: The Linker

§ An object file isn’t directly
executable; it first needs to be
fed into a linker (also known
as link-loader or link-editor).
§ The linker does the following tasks:
§ identifies the initial program entry point (_start label)
§ binds symbolic references to memory addresses
§ unites all the object and library files
§ produces an executable ELF file

93

ELF File

§ The Executable and Linkable
Format was designed by the
UNIX System Laboratories.
§Used by contemporary Linux

implementations as its standard
executable file format.
§Supports shared libraries

(dynamic linking).

94

a.out File

§ a.out is the default file name given to
executable files by UNIX linkers.
§ It means “assembly output”, in spite of being

linker output!
§ On the PDP-7 computer, there was no linker.

Executable programs were created directly by
the assembler. The name stuck, even when the
linkers started to appear in newer machines.

95

$ vi test.asm
$ ls
test.asm
$ nasm -f elf test.asm
$ ls
test.asm test.o
$ ld -s -o test test.o
$ ls
test test.asm test.o
$ test

assembly

linkage

execution

Building a Program

edition

96

Linux-NASM
Program Skeleton

bits 32 ; -- 32 bit program
section .data ; -- Start data segment

; put initialized data here
section .bss ; -- Start bss segment

; put non-initialized data here
section .text ; -- Start code segment

global _start ; -- Export “_start” label
_start ; -- Define “_start” label

; put program code here
mov eax, 1 ; -- Exit system call
mov ebx, 0 ; exit code #0
int 0x80

97

Segments

§A segment on UNIX is a
section of related stuff
in a binary.
§ELF files have three segments:
§ TEXT for storing code
§ DATA for storing initialized data
§ BSS for non-initialized data

98

NASM Source Code
§Every NASM program

source line has the
following four fields:

label: instruction operands ; comment

§Every field is optional.
§ The number of operands depend of the

instruction.

99

Instructions

§ Mnemonics that
represent x86
opcodes.
§ Generate code that

produce actions at
run time.

§ Not real x86 instructions
(they don’t produce any
actions at run time).
§ Are used in the

instruction field because
that’s the most
convenient place to put
them.

Pseudo-
Instructions

100

Directives

§Statements that
allow us to control
how a program is
assembled.
§ They only work at

assembly time
(they don’t directly
produce any
machine code).

101

bits
Directive
§Specifies if NASM must produce code that

will run in 16 or 32-bit mode.
§ELF files only support 32-bit mode:

bits 32
§May be omitted for ELF files.

102

section .data Directive

§States the beginning of the initialized data
segment.
§An image of this segment’s data is

physically stored in the executable file.
§ This segment contains read/write data.

103

Pseudo-Instructions for the
Data Segment

Pseudo-
Instruction

Meaning Size (bits)

db Define byte 8
dw Define word 16
dd Define double word 32
dq Define quadword 64
dt Define ten bytes 80

104

section .bss Directive
§ States the beginning of the non-initialized data

segment.
§ Only the size of the data is stored in the

executable file. Once the program is loaded into
memory, all the data in this section is set to
zero.
§ This segment contains read/write data.
§ BSS means “Block Started by Symbol”, a

pseudo-instruction from the old IBM 704
assembler, carried over into UNIX.

