

Assembly Language
Course Notes

Cortesía: MSc. Ariel Ortiz

January 2003

 2002 by Ariel Ortiz, ITESM CEM. 1

Registers

eax
ax

ah al Accumulator

ebx
bx

bh bl Base

ecx
cx

ch cl Count

edx
dx

dh dl Data

081631

eax
ax

ah al Accumulator
eax

ax
ah al Accumulator

ebx
bx

bh bl Base

ecx
cx

ch cl Count

edx
dx

dh dl Data

081631

esp
sp Stack Pointer

ebp
bp Base Pointer

esi
si Source Index

edi
di Destination Index

esp
sp Stack Pointer

esp
sp Stack Pointer

ebp
bp Base Pointer

ebp
bp Base Pointer

esi
si Source Index

esi
si Source Index

edi
di Destination Index

edi
di Destination Index

eip Instruction Pointereip Instruction Pointer

 2002 by Ariel Ortiz, ITESM CEM. 2

Flags Register

Flag Name Purpose

cf Carry Flag
Is set if the result of an arithmetic operation involving
unsigned numbers overflows.

of Overflow Flag
Is set if the result of an arithmetic operation involving
signed numbers overflows.

sf Sign Flag
Is set if the result of an arithmetic or logical operation is
negative.

zf Zero Flag
Is set if the result of an arithmetic or logical operation is
zero.

pf Parity Flag
Is set if the result of an arithmetic or logical operation has
an even number of 1 bits in its 8 least significant bits.

af Auxiliary Flag

Is set if the result of an arithmetic operation has a carry
out from the low-order nibble. Used in binary-coded
decimal (BCD) operations.

Segment Registers

...

11

of sf

7

zf

6

af

4

pf

2

cf

031

eflags

...

11

of sf

7

zf

6

af

4

pf

2

cf

031

...

11

of sf

7

zf

6

af

4

pf

2

cf

031

eflags

cs Code Segment

015

ds Data Segment

es Extra Segment

fs Extra Segment

gs Extra Segment

ss Stack Segment

cs Code Segmentcs Code Segment

015

ds Data Segmentds Data Segment

es Extra Segmentes Extra Segment

fs Extra Segmentfs Extra Segment

gs Extra Segmentgs Extra Segment

ss Stack Segmentss Stack Segment

 2002 by Ariel Ortiz, ITESM CEM. 3

Memory Locations

[base + index * scale + displacement]

32-bit base register

32-bit index register

scale factor

eax, ebx, ecx, edx,
esi, edi, ebp, esp

eax, ebx, ecx, edx,
esi, edi, ebp

1, 2, 4, 8×+

displacement+ 8-bit, 32-bit

memory location

32-bit base register

32-bit index register

scale factor

eax, ebx, ecx, edx,
esi, edi, ebp, esp

eax, ebx, ecx, edx,
esi, edi, ebp

1, 2, 4, 8×+

displacement+ 8-bit, 32-bit

memory location

 2002 by Ariel Ortiz, ITESM CEM. 4

C Linkage Convention
• When combining C++ and assembly language modules, it is important to follow

the C Linkage Convention.

• The C Linkage Convention establishes the machine registers usage, the layout
of arguments put on the stack, the layout of built-in types such as integers and
floats, the form of names passed by the compiler to the linker, and the amount
of type checking required from the linker.

• There also is another linkage convention called the C++ linkage convention,
which is the default used by C++ compilers and linkers. This convention
depends on a technique called name mangling, which consists on applying a
special algorithm to modify public names, thus permitting overloading. Because
different C++ compilers apply different mangling algorithms, in general it’s
better to stick with the C linkage convention when mixing C++ and other
languages.

• In C++, the C Linkage Convention is achieved by using the extern "C"
directive. Example:

extern "C" int foo(int x);

• NASM labels are exported to other modules using the GLOBAL directive.
Symbols defined elsewhere may be imported to a NASM module using the
EXTERN directive. All other labels are local to the NASM source file.

• In the Windows platform, all names in an assembly language source file must
have an underscore (_) prefix if they refer to names declared in a C++ source
file. This is not so in the Linux platform, where no prefix is required.

• When calling a function, arguments are pushed to the stack in reverse order,
that is, from right to left as they syntactically appear in the C++ source. Once
the arguments are in the stack, a CALL instruction to the desired function is
executed. When the function returns, the arguments are still in the stack and
must be removed. Adjusting the ESP register through an ADD instruction does
the trick.

• A called function must preserve the original values of following registers: EBX,
EBP, ESI and EDI. All other registers (including EFLAGS, FPU, MMX, and SSE
registers) may be freely modified by the called function.

• The function prologue should be as follows:
push ebp
mov ebp, esp

This preserves the value of the EBP register, so that it can now point to the
current top of stack.

• Space for local variables may be allocated by subtracting to ESP the number of
bytes required.

 2002 by Ariel Ortiz, ITESM CEM. 5

• At the beginning of the function execution, the stack has the following layout:

...
...

EBP

Original value
of EBP

CALL return
address

Arguments

EBP+4

EBP+8

EBP-4
Local Variables

ESP

first local variable

first argument

...
...

EBP

Original value
of EBP

CALL return
address

Arguments

EBP+4

EBP+8

EBP-4
Local Variables

ESP

first local variable

first argument

• Once the called function ends, the following function epilogue should be

executed to undo the actions of the function prologue:
pop ebp
ret

• The C++/NASM data types counterparts are summarized in the following table:

C++ Data Type Size (bits) NASM Data Type
char 8 BYTE
short 16 WORD
int 32 DWORD
long 32 DWORD
void* (pointer to any type) 32 DWORD
float 32 DWORD
double 64 QWORD
long double 80 TWORD

• Function return values are placed in the following registers:

C++ Data Type Register
char , short, int,
long , and void* EAX

float, double,
and long double ST0

 2002 by Ariel Ortiz, ITESM CEM. 6

Integer Operations

Data Transfers
Instruction Operation Notes

MOV dest, orig dest ← orig Move. Operands must be the
same size (BYTE, WORD or
DWORD). dest may be a
register or memory location.
orig may be a register, memory
location or immediate value.
Both orig and dest can’t be
memory locations at the same
time.

XCHG op1, op2 temp ← op1
op1 ← op2
op2 ← temp

Exchange. Operands must be
the same size (BYTE, WORD
or DWORD). At least one of the
operands must be a register.
The other one may be a
memory location or another
register.

Stack Manipulation
Instruction Operation Notes

PUSH op ESP ← ESP – 4
[ESP] ← op

Operand must be a DWORD
register, memory location or
immediate value.

POP dest dest ← [ESP]
ESP ← ESP + 4

Operand must be a DWORD
register or memory location.

PUSHF ESP ← ESP – 4
[ESP] ← EFLAGS

Push flags.

POPF EFLAGS ← [ESP]
ESP ← ESP + 4

Pop flags.

 2002 by Ariel Ortiz, ITESM CEM. 7

Condition Codes
Suffix Meaning Flag Interpretation Notes

O Overflow OF==1
NO No Overflow OF==0
S Sign SF==1

NS Not Sign SF==0
P Parity

PE Parity Even
PF==1

NP Not Parity
PO Parity Odd

PF==0

Z Zero
E Equal

ZF==1

NZ Not Zero
NE Not Equal

ZF==0

C Carry
B Below

NAE Not Above nor Equal
CF==1

NC No Carry
NB Not Below
AE Above or Equal

CF==0

BE Below or Equal
NA Not Above

CF==1 || ZF==1

A Above
NBE Not Below nor Equal

CF==0 && ZF==0

Used for UNSIGNED
comparisons.

L Less
NGE Not Greater nor Equal

SF!=OF

GE Greater or Equal
NL Not Less

SF==OF

LE Less or Equal
NG Not Greater

ZF==1 || SF!=OF

G Greater
NLE Not Less nor Equal

ZF==0 && SF==OF

Used for SIGNED
comparisons.

 2002 by Ariel Ortiz, ITESM CEM. 8

Conditional Data Transfers
Instruction Operation Notes

CMOVcc dest, orig if (cc) {
 dest ← orig
}

cc is any of the condition codes.
Operands must be the same
size (WORD or DWORD). dest
must be a register. orig may be
a register or memory location.

SETcc dest if (cc) {
 dest ← 0x01
} else {
 dest ← 0x00
}

cc is any of the condition codes.
dest must be a BYTE register
or memory location.

Flow Control
Instruction Operation Notes

JMP dest EIP ← dest Unconditional jump. dest may
be a DWORD register, memory
location or immediate value
(typically a label).

Jcc dest if (cc) {
 EIP ← EIP + dest
}

Conditional short jump. cc is
any of the condition codes. dest
must be an immediate value
(typically a label) within a
signed 8-bit range (-128 to
127).

Jcc NEAR dest if (cc) {
 EIP ← EIP + dest
}

Conditional near jump. cc is any
of the condition codes. dest
must be an immediate value
(typically a label) within a
signed 32-bit range.

CALL dest ESP ← ESP – 4
[ESP] ← EIP
EIP ← dest

Call subroutine. dest may be a
DWORD register, memory
location or immediate value
(typically a label).

RET EIP ← [ESP]
ESP ← ESP + 4

Return from subroutine.

Carry Flag
Instruction Operation Notes

CLC CF ← 0 Clear carry.
STC CF ← 1 Set carry.
CMC CF ← ~CF Complement carry.

 2002 by Ariel Ortiz, ITESM CEM. 9

Addition
Instruction Operation Notes

ADD dest, orig dest ← dest + orig Same restrictions as MOV
instruction.
Modified flags:
OF SF ZF AF PF CF

ADC dest, orig dest ← dest + orig + CF Add with carry. Same
restrictions as MOV instruction.
Modified flags:
OF SF ZF AF PF CF

INC dest dest ← dest + 1 Increment. dest may be a
BYTE, WORD or DWORD
register or memory location.
Modified flags:
OF SF ZF AF PF

Subtraction
Instruction Operation Notes

SUB dest, orig dest ← dest – orig Subtract. Same restrictions as
MOV instruction.
Modified flags:
OF SF ZF AF PF CF

SBB dest, orig dest ← dest – orig – CF Subtract with borrow. Same
restrictions as MOV instruction.
Modified flags:
OF SF ZF AF PF CF

DEC dest dest ← dest – 1 Decrement. Same restrictions
as INC instruction.
Modified flags:
OF SF ZF AF PF

NEG dest dest ← – dest Two’s complement. Same
restrictions as INC instruction.
Sets CF, unless dest is zero, in
which cas e CF is cleared.
Modified flags:
OF SF ZF AF PF CF

CMP op1, op2 IGNORE ← op1 – op2 Compare. Same restrictions as
MOV instruction.
Modified flags:
OF SF ZF AF PF CF

 2002 by Ariel Ortiz, ITESM CEM. 10

Multiplication
Instruction Operation Notes

MUL orig if (size(orig)== 8) {
 AX ← AL × orig
} else if (size(orig)==16) {
 DX:AX ← AX × orig
} else if (size(orig)==32) {
 EDX:EAX ← EAX × orig
}

Used for UNSIGNED
multiplications.
orig may be a BYTE, WORD
or DWORD register or
memory location.

IMUL orig if (size(orig)== 8) {
 AX ← AL × orig
} else if (size(orig)==16) {
 DX:AX ← AX × orig
} else if (size(orig)==32) {
 EDX:EAX ← EAX × orig
}

Used for SIGNED
multiplications.
orig may be a BYTE, WORD
or DWORD register or
memory location.

IMUL dest, orig dest ← dest × orig Operands must be the same
size (WORD or DWORD).
dest must be a register. orig
may be a register, memory
location or immediate value.

IMUL dest, orig, const dest ← orig × const Operands must be the same
size (WORD or DWORD).
dest must be a register. orig
may be a register or memory
location. const must be an
immediate value.

 2002 by Ariel Ortiz, ITESM CEM. 11

Division
Instruction Operation Notes

DIV orig if (size(orig)== 8) {
 AL ← AX / orig
 AH ← AX % orig
} else if (size(orig)==16) {
 AX ← DX:AX / orig
 DX ← DX:AX % orig
} else if (size(orig)==32) {
 EAX ← EDX:EAX / orig
 EDX ← EDX:EAX % orig
}

Used for UNSIGNED
divisions.
Produces an exception
(INT 0) if divide by zero or if
quotient doesn’t fit.

IDIV orig if (size(orig)== 8) {
 AL ← AX / orig
 AH ← AX % orig
} else if (size(orig)==16) {
 AX ← DX:AX / orig
 DX ← DX:AX % orig
} else if (size(orig)==32) {
 EAX ← EDX:EAX / orig
 EDX ← EDX:EAX % orig
}

Used for SIGNED divisions.
Produces an exception
(INT 0) if divide by zero or if
quotient doesn’t fit.

Data Extensions
Instruction Operation Notes

CBW AX ← SignExtend(AL) Convert byte to word.
CWD DX:AX ← SignExtend(AX) Convert word to dword.
CDQ EDX:EAX ← SignExtend(EAX) Convert dword to qword.
MOVSX dest, orig dest ← SignExtend(orig) Move with sign extend.

dest must be a WORD or
DWORD register. orig
may be a BYTE or
WORD register or
memory location. dest
must be larger than orig.

MOVZX dest, orig dest ← ZeroExtend(orig) Move with zero extend.
Same restrictions as
MOVSX instruction.

 2002 by Ariel Ortiz, ITESM CEM. 12

Logical
Instruction Operation Notes

AND dest, orig dest ← dest & orig

X Y X & Y
0 0 0
0 1 0
1 0 0
1 1 1

Same restrictions as
MOV instruction.
Modified flags:
SF ZF PF
CF←0 OF←0

OR dest, orig dest ← dest | orig

X Y X | Y
0 0 0
0 1 1
1 0 1
1 1 1

Same restrictions as
MOV instruction.
Modified flags:
SF ZF PF
CF←0 OF←0

XOR dest, orig dest ← dest ̂ orig

X Y X ̂Y
0 0 0
0 1 1
1 0 1
1 1 0

Exclusive OR. Same
restrictions as MOV
instruction.
Modified flags:
SF ZF PF
CF←0 OF←0

NOT dest dest ← ~dest

X ~X
0 1
1 0

One’s complement.
Same restrictions as INC
instruction.
Modified flags:
SF ZF PF
CF←0 OF←0

TEST dest, orig IGNORE ← dest & orig Same restrictions as
MOV instruction.
Modified flags:
SF ZF PF
CF←0 OF←0

 2002 by Ariel Ortiz, ITESM CEM. 13

Shift
Instruction Operation Notes

SHL dest, count Shift left. dest may be a
BYTE, WORD or
DWORD register or
memory location. count
may be CL or an
immediate value.
Modified flags:
SF ZF PF CF

SHR dest, count Shift right. Same
restrictions as SHL
instruction.
Modified flags:
SF ZF PF CF

SAR dest, count Shift arithmetic right.
Same restrictions as
SHL instruction.
Modified flags:
SF ZF PF CF

cf ...

msb lsb

0cf ...

msb lsb

0

cf...

msb lsb

0 cf...

msb lsb

0

cf...

msb lsb

cf...

msb lsb

 2002 by Ariel Ortiz, ITESM CEM. 14

Rotate
Instruction Operation Notes

ROL dest, count Rotate left. Same
restrictions as SHL
instruction.
Modified flags:
SF ZF PF CF

ROR dest, count Rotate right. Same
restrictions as SHL
instruction.
Modified flags:
SF ZF PF CF

RCL dest, count Rotate through carry
left. Same restrictions
as SHL instruction.
Modified flags:
SF ZF PF CF

RCR dest, count Rotate through carry
right. Same restrictions
as SHL instruction.
Modified flags:
SF ZF PF CF

cf ...

msb lsb

cf ...

msb lsb

cf...

msb lsb

cf...

msb lsb

cf ...

msb lsb

cf ...

msb lsb

cf...

msb lsb

cf...

msb lsb

 2002 by Ariel Ortiz, ITESM CEM. 15

Floating Point Operations

Real Transfers
Instruction Operation Notes

FLD mem push(mem) mem must be a DWORD,
QWORD or TWORD memory
location.

FLD STn push(STn)
FST mem mem ← ST0 mem must be a DWORD or

QWORD memory location.
FST STn STn ← ST0
FSTP mem mem ← pop() mem must be a DWORD,

QWORD or TWORD memory
location.

FSTP STn STn ← pop()
FXCH temp ← ST0

ST0 ← ST1
ST1 ← temp

FXCH STn temp ← ST0
ST0 ← STn
STn ← temp

Integer Transfers
Instruction Operation Notes

FILD mem push(mem) mem must be a WORD,
DWORD or QWORD memory
location.

FIST mem mem ← ST0 mem must be a WORD or
DWORD memory location.

FISTP mem mem ← pop() mem must be a WORD,
DWORD or QWORD memory
location.

Packed BCD Transfers
Instruction Operation Notes

FBLD mem push(mem) mem must be a TWORD
memory location.

FBSTP mem mem ← pop() mem must be a TWORD
memory location.

 2002 by Ariel Ortiz, ITESM CEM. 16

Loading Constants
Instruction Operation

FLDZ push(+0.0)
FLD1 push(1.0)
FLDPI push(π)
FLDL2E push(log2e)
FLDL2T push(log210)
FLDLG2 push(log102)
FLDLN2 push(loge2)

Addition
Instruction Operation Notes

FADD STn, ST0 STn ← STn + ST0
FADD ST0, STn ST0 ← ST0 + STn
FADD mem ST0 ← ST0 + mem mem must be a real DWORD or

QWORD memory location.
FADDP STn, ST0 STn ← STn + ST0

pop()

FIADD mem ST0 ← ST0 + mem mem must be an integer
WORD or DWORD memory
location.

Normal Subtraction
Instruction Operation Notes

FSUB STn, ST0 STn ← STn – ST0
FSUB ST0, STn ST0 ← ST0 – STn
FSUB mem ST0 ← ST0 – mem mem must be a real DWORD or

QWORD memory location.
FSUBP STn, ST0 STn ← STn – ST0

pop()

FISUB mem ST0 ← ST0 – mem mem must be an integer
WORD o DWORD memory
location.

 2002 by Ariel Ortiz, ITESM CEM. 17

Reversed Subtraction
Instruction Operation Notes

FSUBR STn, ST0 STn ← ST0 – STn
FSUBR ST0, STn ST0 ← STn – ST0
FSUBR mem ST0 ← mem – ST0 mem must be a real DWORD or

QWORD memory location.
FSUBRP STn, ST0 STn ← ST0 – STn

pop()

FISUBR mem ST0 ← mem – ST0 mem must be an integer
WORD or DWORD memory
location.

Multiplication
Instruction Operation Notes

FMUL STn, ST0 STn ← STn × ST0
FMUL ST0, STn ST0 ← ST0 × STn
FMUL mem ST0 ← ST0 × mem mem must be a real DWORD or

QWORD memory location.
FMULP STn, ST0 STn ← STn × ST0

pop()

FIMUL mem ST0 ← ST0 × mem mem must be an integer
WORD or DWORD memory
location.

Normal Division
Instruction Operation Notes

FDIV STn, ST0 STn ← STn ÷ ST0
FDIV ST0, STn ST0 ← ST0 ÷ STn
FDIV mem ST0 ← ST0 ÷ mem mem must be a real DWORD or

QWORD memory location.
FDIVP STn, ST0 STn ← STn ÷ ST0

pop()

FIDIV mem ST0 ← ST0 ÷ mem mem must be an integer
WORD or DWORD memory
location.

 2002 by Ariel Ortiz, ITESM CEM. 18

Reversed Division
Instruction Operation Notes

FDIVR STn, ST0 STn ← ST0 ÷ STn
FDIVR ST0, STn ST0 ← STn ÷ ST0
FDIVR mem ST0 ← mem ÷ ST0 mem must be a real DWORD or

QWORD memory location.
FDIVRP STn, ST0 STn ← ST0 ÷ STn

pop()

FIDIVR mem ST0 ← mem ÷ ST0 mem must be an integer
WORD or DWORD memory
location.

Transcendental
All trigonometric operations work with radians.

Instruction Operation Notes
F2XM1 x ← pop()

push(2x - 1)
It must be true that: -0.5 ≤ x ≤ +0.5

FYL2X x ← pop()
y ← pop()
push(y × log2(x))

FYL2XP1 x ← pop()
y ← pop()
push(y × log2(x + 1))

It must be true that:

− + ≤ ≤ −1
2

2
1

2

2
x

FPTAN x ← pop()
push(tan(x))
push(1.0)

Computes partial tangent.
It must be true that: 0 ≤ x < π×262

FPATAN x ← pop()
y ← pop()
push(arctan(y / x))

Computes the partial arctangent.

FSIN ST0 ← sin(ST0) Computes sine.
FCOS ST0 ← cos(ST0) Computes cosine.
FSINCOS x ← pop()

push(sin(x))
push(cos(x))

Computes sine and cosine.

 2002 by Ariel Ortiz, ITESM CEM. 19

Comparisons
Instruction Operation Notes

FCOMI ST0, STn compare(ST0, STn) Modifies ZF, PF and CF (see
table).

FCOMIP ST0, STn compare(ST0, STn)
pop()

Modifies ZF, PF and CF (see
table).

FCMOVB ST0, STn if(below)
 ST0 ← STn
endif

Must be executed after FCOMI
or FCOMIP.

FCMOVBE ST0, STn if(below or equal)
 ST0 ← STn
endif

Must be executed after FCOMI
or FCOMIP.

FCMOVE ST0, STn if(equal)
 ST0 ← STn
endif

Must be executed after FCOMI
or FCOMIP.

FCMOVNB ST0, STn if(not below)
 ST0 ← STn
endif

Must be executed after FCOMI
or FCOMIP.

FCMOVNBE ST0, STn if(not below nor equal)
 ST0 ← STn
endif

Must be executed after FCOMI
or FCOMIP.

FCMOVNE ST0, STn if(not equal)
 ST0 ← STn
endif

Must be executed after FCOMI
or FCOMIP.

FCMOVNU ST0, STn if(not unordered)
 ST0 ← STn
endif

Must be executed after FCOMI
or FCOMIP.

FCMOVU ST0, STn if(unordered)
 ST0 ← STn
endif

Must be executed after FCOMI
or FCOMIP.

Compare Table

compare(x, y) ZF PF CF
x > y 0 0 0
x < y 0 0 1
x = y 1 0 0

Not Comparable 1 1 1

 2002 by Ariel Ortiz, ITESM CEM. 20

Miscellaneous
Instruction Operation Notes

FINIT Resets the FPU to its default
state.

Empties the FPU register
stack.

FABS if(ST0 < 0)
 ST0 ← –ST0
endif

Computes the absolute
value.

FCHS ST0 ← –ST0 Change sign.
FRNDINT ST0 ← round(ST0) Rounds ST0 to an integer.
FSQRT ST0 ← ST0 Computes square root.

FPREM ST0 ← remainder(ST0 ÷ ST1) Computes partial remainder
of ST0 divided by ST1
using repeated
subtractions.

FSCALE ST0 ← ST0 × 2int(ST1) Scales by powers of two.
FXTRACT temp ← pop()

push(exponent(temp))
push(mantisa(temp))

Breaks a number down into
exponent and mantissa.

 2002 by Ariel Ortiz, ITESM CEM. 21

MMX Operations

Empty MMX State
Instruction Operation Notes

EMMS Empty MMX state. Should be used at the end of a
sequence of MMX instructions
in order to allow subsequent
FPU instructions.

Data Transfers
Instruction Operation Notes

MOVD dest, orig dest ← orig Copies the low 32 bits of orig
into dest. One of dest or orig
must be a QWORD register.
The other one may be a
DWORD register or memory
location. If dest is a QWORD
register, its top 32 bits are set
to zero.

MOVQ dest, orig dest ← orig At least one of dest or orig must
be a QWORD register. The
other one may be another
QWORD register or memory
location.

Data Range Limits for Saturation
Lower Limit Upper Limit Data Type

decimal hexadecimal decimal hexadecimal
SIGNED BYTE –128 0x80 127 0x7F
SIGNED WORD –32,768 0x8000 32,767 0x7FFF
UNSIGNED BYTE 0 0x00 255 0xFF
UNSIGNED WORD 0 0x0000 65,535 0xFFFF

General MMX instruction restrictions: dest must be a QWORD register. orig
may be a QWORD register or memory location.

 2002 by Ariel Ortiz, ITESM CEM. 22

Addition
Instruction Operation Notes

PADDB dest, orig Packed truncated
byte addition.

PADDW dest, orig Packed truncated
word addition.

PADDD dest, orig Packed truncated
dword addition.

PADDSB dest, orig Packed signed
saturated byte
addition.

PADDSW dest,
orig

 Packed signed
saturated word
addition.

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

dest

orig

dest

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

dest

orig

dest

+

=

+

=

+

=

+

=

dest

orig

dest

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

dest

orig

dest

+

=

+

=

dest

orig

dest

+

=

+

=

+

=

+

=

dest

orig

dest

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

dest

orig

dest

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

dest

orig

dest

+

=

+

=

+

=

+

=

dest

orig

dest

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

dest

orig

dest

 2002 by Ariel Ortiz, ITESM CEM. 23

Addition (continued)
Instruction Operation Notes

PADDUSB dest,
orig

 Packed unsigned
saturated byte
addition.

PADDUSW dest,
orig

 Packed unsigned
saturated word
addition.

Subtraction
Instruction Operation Notes

PSUBB dest, orig Packed truncated
byte subtraction.

PSUBW dest, orig Packed truncated
word subtraction.

PSUBD dest, orig Packed truncated
dword subtraction.

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

dest

orig

dest

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

dest

orig

dest

+

=

+

=

+

=

+

=

dest

orig

dest

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

dest

orig

dest

-

=

-

=

-

=

-

=

-

=

-

=

-

=

-

=

dest

orig

dest

-

=

-

=

-

=

-

=

-

=

-

=

-

=

-

=

-

=

-

=

-

=

-

=

-

=

-

=

-

=

-

=

dest

orig

dest

-

=

-

=

-

=

-

=

dest

orig

dest

-

=

-

=

-

=

-

=

-

=

-

=

-

=

-

=

dest

orig

dest

-

=

-

=

dest

orig

dest

-

=

-

=

-

=

-

=

dest

orig

dest

 2002 by Ariel Ortiz, ITESM CEM. 24

Subtraction (continued)
Instruction Operation Notes

PSUBSB dest, orig Packed signed
saturated byte
subtraction.

PSUBSW dest,
orig

 Packed signed
saturated word
subtraction.

PSUBUSB dest,
orig

 Packed unsigned
saturated byte
subtraction.

PSUBUSW dest,
orig

 Packed unsigned
saturated word
subtraction.

Multiplication
Instruction Operation Notes

PMULLW dest, orig Packed signed
multiply low word.

PMULHW dest,
orig

 Packed signed
multiply high word.

-

=

-

=

-

=

-

=

-

=

-

=

-

=

-

=

dest

orig

dest

-

=

-

=

-

=

-

=

-

=

-

=

-

=

-

=

-

=

-

=

-

=

-

=

-

=

-

=

-

=

-

=

dest

orig

dest

-

=

-

=

-

=

-

=

-

=

-

=

-

=

-

=

dest

orig

dest

-

=

-

=

-

=

-

=

-

=

-

=

-

=

-

=

-

=

-

=

-

=

-

=

-

=

-

=

-

=

-

=

dest

orig

dest

-

=

-

=

-

=

-

=

dest

orig

dest

-

=

-

=

-

=

-

=

-

=

-

=

-

=

-

=

dest

orig

dest

-

=

-

=

-

=

-

=

dest

orig

dest

-

=

-

=

-

=

-

=

-

=

-

=

-

=

-

=

dest

orig

dest

*

Low Order

=

*

Low Order

=

*

Low Order

=

*

Low Order

=

dest

orig

dest

*

Low Order

=

*

Low Order

=

*

Low Order

=

*

Low Order

=

*

Low Order

=

*

Low Order

=

*

Low Order

=

*

Low Order

=

dest

orig

dest

*

High Order

=

*

High Order

=

*

High Order

=

*

High Order

=

dest

orig

dest

*

High Order

=

*

High Order

=

*

High Order

=

*

High Order

=

*

High Order

=

*

High Order

=

*

High Order

=

*

High Order

=

dest

orig

dest

 2002 by Ariel Ortiz, ITESM CEM. 25

Multiplication and Addition
Instruction Operation Notes

PMADDWD dest,
orig

 Packed signed
multiply and add.

Logical
Instruction Operation Notes

PAND dest, orig Bitwise qword
AND.

POR dest, orig Bitwise qword OR.

PXOR dest, orig Bitwise qword
XOR.

PANDN dest, orig Bitwise qword
AND/NOT.

* * * *
dest

orig

dest
+ +

** ** ** **
dest

orig

dest
+ +

&

=

dest

orig

dest

&

=

&

=

dest

orig

dest

|

=

dest

orig

dest

|

=

|

=

dest

orig

dest

^

=

dest

orig

dest

^

=

^

=

dest

orig

dest

~

&

dest

orig

dest
=

~dest
~

&

dest

orig

dest
=

~dest

 2002 by Ariel Ortiz, ITESM CEM. 26

Shift Logical
Instruction Operation Notes

PSLLW dest, orig Packed word
logical shift left.
orig may also be
an immediate
value.

PSLLD dest, orig Packed dword
logical shift left.
orig may also be
an immediate
value.

PSLLQ dest, orig Packed qword
logical shift left.
orig may also be
an immediate
value.

PSRLW dest, orig Packed word
logical (unsigned)
shift right. orig
may also be an
immediate value.

PSRLD dest, orig Packed dword
logical (unsigned)
shift right. orig
may also be an
immediate value.

PSRLQ dest, orig Packed qword
logical (unsigned)
shift right. orig
may also be an
immediate value.

<<

=

<<

=

<<

=

<<

=

dest

orig

dest

<<

=

<<

=

<<

=

<<

=

<<

=

<<

=

<<

=

<<

=

dest

orig

dest

<<

=

<<

=

dest

orig

dest

<<

=

<<

=

<<

=

<<

=

dest

orig

dest

<<

=

dest

orig

dest

<<

=

<<

=

dest

orig

dest

>>

=

>>

=

>>

=

>>

=

dest

orig

dest

>>

=

>>

=

>>

=

>>

=

>>

=

>>

=

>>

=

>>

=

dest

orig

dest

>>

=

>>

=

dest

orig

dest

>>

=

>>

=

>>

=

>>

=

dest

orig

dest

>>

=

dest

orig

dest

>>

=

>>

=

dest

orig

dest

 2002 by Ariel Ortiz, ITESM CEM. 27

Shift Arithmetic
Instruction Operation Notes

PSRAW dest, orig Packed word
arithmetic (signed)
shift right. orig
may also be an
immediate value.

PSRAD dest, orig Packed dword
arithmetic (signed)
shift right. orig
may also be an
immediate value.

Compare Equal
Instruction Operation Notes

PCMPEQB dest,
orig

 Packed compare
for equal bytes.
For each resulting
byte: All ones if
true, all zeros if
false.

PCMPEQW dest,
orig

 Packed compare
for equal words.
For each resulting
word: All ones if
true, all zeros if
false.

PCMPEQD dest,
orig

 Packed compare
for equal dwords.
For each resulting
dword: All ones if
true, all zeros if
false.

>>

=

>>

=

>>

=

>>

=

dest

orig

dest

>>

=

>>

=

>>

=

>>

=

>>

=

>>

=

>>

=

>>

=

dest

orig

dest

>>

=

>>

=

dest

orig

dest

>>

=

>>

=

>>

=

>>

=

dest

orig

dest

==

=

==

=

==

=

==

=

==

=

==

=

==

=

==

=

dest

orig

dest

==

=

==

=

==

=

==

=

==

=

==

=

==

=

==

=

==

=

==

=

==

=

==

=

==

=

==

=

==

=

==

=

dest

orig

dest

==

=

==

=

==

=

==

=

dest

orig

dest

==

=

==

=

==

=

==

=

==

=

==

=

==

=

==

=

dest

orig

dest

==

=

==

=

dest

orig

dest

==

=

==

=

==

=

==

=

dest

orig

dest

 2002 by Ariel Ortiz, ITESM CEM. 28

Compare Greater Than
Instruction Operation Notes

PCMPGTB dest,
orig

 Packed compare
for greater than
bytes.
For each resulting
byte: All ones if
true, all zeros if
false.

PCMPGTW dest,
orig

 Packed compare
for greater than
words.
For each resulting
word: All ones if
true, all zeros if
false.

PCMPGTD dest,
orig

 Packed compare
for greater than
dwords.
For each resulting
dword: All ones if
true, all zeros if
false.

Pack
Instruction Operation Notes

PACKSSWB dest,
orig

 Pack words into
bytes with signed
saturation.

PACKSSDW dest,
orig

 Pack dwords into
words with signed
saturation.

PACKUSWB dest,
orig

 Pack words into
bytes with
unsigned
saturation.

>

=

>

=

>

=

>

=

>

=

>

=

>

=

>

=

dest

orig

dest

>

=

>

=

>

=

>

=

>

=

>

=

>

=

>

=

>

=

>

=

>

=

>

=

>

=

>

=

>

=

>

=

dest

orig

dest

>

=

>

=

>

=

>

=

dest

orig

dest

>

=

>

=

>

=

>

=

>

=

>

=

>

=

>

=

dest

orig

dest

>

=

>

=

dest

orig

dest

>

=

>

=

>

=

>

=

dest

orig

dest

dest

orig

dest

dest

orig

dest

dest

orig

dest

dest

orig

dest

dest

orig

dest

dest

orig

dest

 2002 by Ariel Ortiz, ITESM CEM. 29

Unpack
Instruction Operation Notes

PUNPCKLBW
dest, orig

 Unpack low
packed bytes.

PUNPCKLWD
dest, orig

 Unpack low
packed words.

PUNPCKLDQ dest,
orig

 Unpack low
packed dwords.

PUNPCKHBW
dest, orig

 Unpack high
packed bytes.

PUNPCKHWD
dest, orig

 Unpack high
packed words.

PUNPCKHDQ
dest, orig

 Unpack high
packed dwords.

dest

orig

dest

dest

orig

dest

dest

orig

dest

dest

orig

dest

dest

orig

dest

dest

orig

dest

dest

orig

dest

dest

orig

dest

dest

orig

dest

dest

orig

dest

dest

orig

dest

dest

orig

dest

 2002 by Ariel Ortiz, ITESM CEM. 30

Average
Instruction Operation Notes

PAVGB dest, orig Packed unsigned
byte average with
rounding (0.5 ↑).

PAVGW dest, orig Packed unsigned
word average with
rounding (0.5 ↑).

Maximum
Instruction Operation Notes

PMAXUB dest, orig Maximum of
packed unsigned
bytes.

PMAXSW dest,
orig

 Maximum of
packed signed
words.

+

÷ 2
=

dest

orig

dest

+

÷ 2
=

+

÷ 2
=

+

÷ 2
=

+

÷ 2
=

+

÷ 2
=

dest

orig

dest

+

÷ 2
=

+

÷ 2
=

+

÷ 2
=

+

÷ 2
=

+

÷ 2
=

+

÷ 2
=

+

÷ 2
=

dest

orig

dest

+

÷ 2
=

+

÷ 2
=

+

÷ 2
=

+

÷ 2
=

+

÷ 2
=

+

÷ 2
=

+

÷ 2
=

+

÷ 2
=

+

÷ 2
=

dest

orig

dest

+

÷ 2
=

+

÷ 2
=

+

÷ 2
=

+

÷ 2
=

+

÷ 2
=

+

÷ 2
=

+

÷ 2
=

+

÷ 2
=

+

÷ 2
=

+

÷ 2
=

+

÷ 2
=

+

÷ 2
=

+

÷ 2
=

+

÷ 2
=

max

=

max

=

max

=

max

=

dest

orig

dest

max

=

max

=

max

=

max

=

max

=

max

=

max

=

max

=

dest

orig

dest

max

=

max

=

max

=

max

=

max

=

max

=

max

=

max

=

dest

orig

dest

max

=

max

=

max

=

max

=

max

=

max

=

max

=

max

=

max

=

max

=

max

=

max

=

max

=

max

=

max

=

max

=

dest

orig

dest

 2002 by Ariel Ortiz, ITESM CEM. 31

Minimum
Instruction Operation Notes

PMINUB dest, orig Minimum of
packed unsigned
bytes.

PMINSW dest, orig Minimum of
packed signed
words.

Absolute Difference Addition
Instruction Operation Notes

PSADBW dest,
orig

 Computes the
absolute
differences of the
packed unsigned
bytes. Differences
are then summed
to produce an
unsigned word
result.

min

=

min

=

min

=

min

=

min

=

min

=

min

=

min

=

dest

orig

dest

min

=

min

=

min

=

min

=

min

=

min

=

min

=

min

=

min

=

min

=

min

=

min

=

min

=

min

=

min

=

min

=

dest

orig

dest

min

=

min

=

min

=

min

=

dest

orig

dest

min

=

min

=

min

=

min

=

min

=

min

=

min

=

min

=

dest

orig

dest

0

–

abs

–

abs

–

abs

–

abs

–

abs

–

abs

–

abs

–

abs

dest

orig

dest

+

0

–

abs

–

abs

–

abs

–

abs

–

abs

–

abs

–

abs

–

abs

dest

orig

dest

+

 2002 by Ariel Ortiz, ITESM CEM. 32

SSE Operations

Data Transfers
Instruction Operation Notes

MOVUPS dest, orig dest ← orig Copies the packed
single precision
floating-point
values of orig into
dest. One of dest
or orig must be a
XMM register. The
other one may be
a XMM register or
a 128-bit memory
location.

MOVSS dest, orig Copies the least
significant single
precision floating-
point value of orig
into dest. One of
dest or orig must
be a XMM
register. The other
one may be a
XMM register or a
32-bit memory
location.

General SSE instruction restrictions: dest must be a XMM register. orig may be
a XMM register or a 128-bit memory location.

orig

dest

orig

dest

 2002 by Ariel Ortiz, ITESM CEM. 33

Basic Arithmetic Instructions
Instruction Operation Notes

ADDPS dest, orig Add packed single
precision floating-
point values.

SUBPS dest, orig Subtract packed
single precision
floating-point
values.

MULPS dest, orig Multiply packed
single precision
floating-point
values.

DIVPS dest, orig Divide packed
single precision
floating-point
values.

+

=

+

=

+

=

+

=

dest

orig

dest

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

dest

orig

dest

-

=

-

=

-

=

-

=

dest

orig

dest

-

=

-

=

-

=

-

=

-

=

-

=

-

=

-

=

dest

orig

dest

*

=

*

=

*

=

*

=

dest

orig

dest

*

=

*

=

*

=

*

=

*

=

*

=

*

=

*

=

dest

orig

dest

/

=

/

=

/

=

/

=

dest

orig

dest

/

=

/

=

/

=

/

=

/

=

/

=

/

=

/

=

dest

orig

dest

 2002 by Ariel Ortiz, ITESM CEM. 34

Reciprocal and Square Root Instructions
RCPPS dest, orig Compute the

approximate
reciprocals of
packed single
precision floating-
point values.

SQRTPS dest, orig Compute the
square root of
packed single
precision floating-
point values.

RSQRTPS dest,
orig

 Compute the
approximate
reciprocals of the
square root of
packed single
precision floating-
point values.

1
/

=

orig

dest

1
/

=

1
/

=

1
/

=

1
/

=

1
/

=

orig

dest

1
/

=

1
/

=

1
/

=

1
/

=

1
/

=

1
/

=

orig

dest

orig

dest

orig

dest

1
/

orig

dest

1
/

1
/

1
/

1
/

orig

dest

1
/

1
/

1
/

1
/
1
/

orig

dest

1
/
1
/

1
/
1
/

1
/
1
/

 2002 by Ariel Ortiz, ITESM CEM. 35

Shuffle Instruction
SHUFPS dest,

orig, select
 Shuffle packed

single precision
floating-point
values. select
must be an 8-bit
immediate value.

dest

orig

3 2 1 0

3 2 1 0

7 6 5 4 3 2 1 0select

dest

orig

3 2 1 03 2 1 0

3 2 1 03 2 1 0

7 6 5 4 3 2 1 07 6 5 4 3 2 1 0select

bit 1 bit 0
0 0 dest[0] = dest[0]
0 1 dest[0] = dest[1]
1 0 dest[0] = dest[2]
1 1 dest[0] = dest[3]

select action

bit 3 bit 2
0 0 dest[1] = dest [0]
0 1 dest[1] = dest [1]
1 0 dest[1] = dest [2]
1 1 dest[1] = dest [3]

select action

bit 5 bit 4
0 0 dest[2] = orig [0]
0 1 dest[2] = orig [1]
1 0 dest[2] = orig [2]
1 1 dest[2] = orig [3]

select action

bit 7 bit 6
0 0 dest[3] = orig [0]
0 1 dest[3] = orig [1]
1 0 dest[3] = orig [2]
1 1 dest[3] = orig [3]

select action

 2002 by Ariel Ortiz, ITESM CEM. 36

SSE2 Operations
All 64-bit MMX instructions have a counterpart with exactly the same name in the
128-bit SSE2 instruction set. The only difference at the assembly language level is
that the MMX instructions use 64-bit registers (MM0 ... MM7) while SSE2
instructions use 128-bit registers (XMM0 ... XMM7). For example, the following
MMX code:

paddusb mm0, mm1

adds 8 unsigned packed bytes using saturated arithmetic. Its SSE2 counterpart
would be:

paddusb xmm0, xmm1

which adds 16 unsigned packed bytes, also using saturated arithmetic.

The following tables describe some integer instructions that are part of the SSE2
instruction but do not exist in the MMX instruction set or that have an extended
functionality.

Data Transfers
Instruction Notes

MOVD dest, orig Move Doubleword. Copies a doubleword from the orig
operand to the dest operand. The orig and dest operands
can be general-purpose registers (EAX, EBX, etc.), MMX
registers, XMM registers, or 32-bit memory locations. This
instruction can be used to move a doubleword to and from
the low doubleword an MMX register and a general-
purpose register or a 32-bit memory location, or to and from
the low doubleword of an XMM register and a general-
purpose register or a 32-bit memory location. The
instruction cannot be used to transfer data between MMX
registers, between XMM registers, between general-
purpose registers, or between memory locations.

When the dest operand is an MMX register, the orig
operand is written to the low doubleword of the register,
and the register is zero-extended to 64 bits. When the dest
operand is an XMM register, the orig operand is written to
the low doubleword of the register, and the register is zero-
extended to 128 bits.

 2002 by Ariel Ortiz, ITESM CEM. 37

MOVQ dest, orig Move Quadword. Copies a quadword from the orig
operand (second operand) to the dest operand. The source
and destination operands can be MMX registers, XMM
registers, or 64-bit memory locations. This instruction can
be used to move a quadword between two MMX registers
or between an MMX register and a 64-bit memory location,
or to move data between two XMM registers or between an
XMM register and a 64-bit memory location. The instruction
cannot be used to transfer data between memory locations.

When the source operand is an XMM register, the low
quadword is moved; when the destination operand is an
XMM register, the quadword is stored to the low quadword
of the register, and the high quadword is cleared to all 0s.

MOVDQU dest, orig Move Unaligned Double Quadword. Moves a double
quadword from the orig operand to the dest operand. This
instruction can be used to load an XMM register from a
128-bit memory location, to store the contents of an XMM
register into a 128-bit memory location, or to move data
between two XMM registers. When the source or
destination operand is a memory operand, the operand
may be unaligned on a 16-byte boundary without causing a
general-protection exception (#GP) to be generated.

MOVDQ2Q dest,
orig

Move Quadword from XMM to MMX Register. Moves the
low quadword from the orig operand to the dest operand.
The orig operand is an XMM register and the dest operand
is an MMX register.

MOVQ2DQ dest,
orig

Move Quadword from MMX to XMM Register. Moves the
quadword from the orig operand to the low quadword of the
dest operand. The orig operand is an MMX register and the
dest operand is an XMM register. The high quadword of
dest is cleared to all 0s.

 2002 by Ariel Ortiz, ITESM CEM. 38

Shift Logical
Instruction Notes

PSLLDQ dest, count Shift Double Quadword Left Logical. Shifts the dest
operand to the left by the number of bytes (not bits)
specified in the count operand. The empty low-order bytes
are cleared (set to all 0s). If the value specified by the count
operand is greater than 15, the dest operand is set to all 0s.
The dest operand is an XMM register. The count operand is
an 8-bit immediate.

PSRLDQ dest,
count

Shift Double Quadword Right Logical. Shifts the dest
operand to the right by the number of bytes (not bits)
specified in the count operand. The empty high-order bytes
are cleared (set to all 0s). If the value specified by the count
operand is greater than 15, the dest operand is set to all 0s.
The dest operand is an XMM register. The count operand is
an 8-bit immediate.

 2002 by Ariel Ortiz, ITESM CEM. 39

NASM Specifics

Segments
Directive Notes

SECTION .data States the beginning of the initialized data segment.
SECTION .bss States the beginning of the uninitialized data segment.

SECTION .text States the beginning of the segment that contains the
program’s executable instructions.

Symbol Exporting and Importing
Directive Notes

GLOBAL symbol Export symbol to linker and external modules.
EXTERN symbol Import symbol defined in an external module.

Declaring Initialized Data
Pseudo-Instruction Notes Size (bits)
symbol DB value Define byte 8
symbol DW value Define word 16
symbol DD value Define dword 32
symbol DQ value Define qword 64
symbol DT value Define tword 80

Declaring Uninitialized Data
Pseudo-Instruction Notes Size (bits)

symbol RESB num Reserve num bytes 8
symbol RESW num Reserve num words 16
symbol RESD num Reserve num dwords 32
symbol RESQ num Reserve num qwords 64
symbol REST num Reserve num twords 80

Defining Constants
Pseudo-Instruction Notes

symbol EQU value Defines symbol to a given constant value.

 2002 by Ariel Ortiz, ITESM CEM. 40

Expressions
Listed in increasing order of precedence.

Operator Notes
| OR
 ̂ XOR

& AND
<< >> Shift left and shift right

+ – Binary addition and subtraction

* / // % %% Multiplication, unsigned division, signed division, unsigned
modulo, signed modulo

+ – ~ Unary plus, minus and negate

$ Evaluates to the assembly position at the beginning of the line
containing the expression

 2002 by Ariel Ortiz, ITESM CEM. 41

ASCII Codes
ASCII

Character Dec Hex
NUL 0 0x00
SOH 1 0x01
STX 2 0x02
ETX 3 0x03
EOT 4 0x04
ENQ 5 0x05
ACK 6 0x06
BEL 7 0x07
BS 8 0x08
HT 9 0x09
LF 10 0x0A
VT 11 0x0B
FF 12 0x0C
CR 13 0x0D
SO 14 0x0E
SI 15 0x0F
DLE 16 0x10
DC1 17 0x11
DC2 18 0x12
DC3 19 0x13
DC4 20 0x14
NAK 21 0x15
SYN 22 0x16
ETB 23 0x17
CAN 24 0x18
EM 25 0x19
SUB 26 0x1A
ESC 27 0x1B
FS 28 0x1C
GS 29 0x1D
RS 30 0x1E
US 31 0x1F
SP 32 0x20
! 33 0x21
" 34 0x22
35 0x23
$ 36 0x24
% 37 0x25
& 38 0x26
' 39 0x27

ASCII Character
Dec Hex

(40 0x28
) 41 0x29
* 42 0x2A
+ 43 0x2B
, 44 0x2C
- 45 0x2D
. 46 0x2E
/ 47 0x2F
0 48 0x30
1 49 0x31
2 50 0x32
3 51 0x33
4 52 0x34
5 53 0x35
6 54 0x36
7 55 0x37
8 56 0x38
9 57 0x39
: 58 0x3A
; 59 0x3B
< 60 0x3C
= 61 0x3D
> 62 0x3E
? 63 0x3F
@ 64 0x40
A 65 0x41
B 66 0x42
C 67 0x43
D 68 0x44
E 69 0x45
F 70 0x46
G 71 0x47
H 72 0x48
I 73 0x49
J 74 0x4A
K 75 0x4B
L 76 0x4C
M 77 0x4D
N 78 0x4E
O 79 0x4F

 2002 by Ariel Ortiz, ITESM CEM. 42

ASCII
Character Dec Hex

P 80 0x50
Q 81 0x51
R 82 0x52
S 83 0x53
T 84 0x54
U 85 0x55
V 86 0x56
W 87 0x57
X 88 0x58
Y 89 0x59
Z 90 0x5A
[91 0x5B
\ 92 0x5C
] 93 0x5D
^ 94 0x5E
_ 95 0x5F
` 96 0x60
a 97 0x61
b 98 0x62
c 99 0x63
d 100 0x64
e 101 0x65
f 102 0x66
g 103 0x67
h 104 0x68

ASCII Character
Dec Hex

i 105 0x69
j 106 0x6A
k 107 0x6B
l 108 0x6C
m 109 0x6D
n 110 0x6E
o 111 0x6F
p 112 0x70
q 113 0x71
r 114 0x72
s 115 0x73
t 116 0x74
u 117 0x75
v 118 0x76
w 119 0x77
x 120 0x78
y 121 0x79
z 122 0x7A
{ 123 0x7B
| 124 0x7C
} 125 0x7D
~ 126 0x7E
DEL 127 0x7F

 2002 by Ariel Ortiz, ITESM CEM. 43

WWW Resources
Course Page http://aortiz.cem.itesm.mx/cb00852.html
Linux Assembly http://linuxassembly.org/
Webopedia http://webopedia.internet.com/
Dr. Dobb’s http://www.x86.org/
Linux Online http://www.linux.org/
Linux Journal http://www.linuxjournal.com/
Linux Gazette http://www.linuxgazette.com/
Linux en México http://www.linux.org.mx/
Intel http://www.intel.com/
AMD http://www.amd.com/

References
[ANTONAKOS] James Antonakos. The Pentium Microprocesor. Prentice Hall.

1997.

[DUNTEMANN] Jeff Duntemann. Assembly Language Step-by-Step:
Programming with DOS and Linux. 2nd Edition. John Wiley &
Sons, 2000.

[INTEL] Pentium 4: Intel Architecture Software Developer’s Manual.
Volumes 1 and 2. Intel Corporation, 2000.

[NEVELN] Bob Neveln. Linux Assembly Language Programming.
Prentice Hall, 2000.

[RAYMOND96] Eric Raymond. The New Hacker's Dictionary. Third Edition.
MIT Press, 1999.

[RAYMOND99] Eric Raymond. The Cathedral and the Bazaar: Musings on
Linux and Open Source by an Accidental Revolutionary.
O'Reilly, 1999.

[TATHAM] Simon Tatham. NASM: The Netwide Assembler
Documentation. 1997.

