
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

reduces the limitations of traditional recognition 
facilitating the ornithologist’s work and improving the 
quality of their research. This allows the experts to focus 
just on high level bird behavior interpretation, working 
either directly from their labs or even through the Internet.  
     For this work, the goal of sensor networks [4, 8, 9] is to 
introduce a certain number of small sensors or motes in a 
natural environment in order to acquire data from their 
surroundings, without human intervention. The large 
amount of data collected this way demands the use of 
sophisticated computational tools for their processing. The 
work reported in this paper is part of collaboration between 
UCLA and ITESM in the ongoing project “Sensor Arrays 
for Acoustic Monitoring of Bird Behavior and Diversity” 
[9] whose specific goal is to monitor different bird species 
from the ecological reserves in California, USA and 
Chiapas, Mexico. 
 
2. Methods 
 
2.1. The Bird Songs  
 
     Bird Songs for this study were obtained from the 
Cornell Lab of Ornithology, Macaulay Library [3]. Songs 
from three species were provided: great antshrike, Taraba 
major (49 song files); dusky antbird, Cercomacra 
tyrannina  (79 song files); and barred antshrike, 
Thamnophilus doliatus  (76 song files). Each song file has 
from a few seconds to several minutes of bird calls, with 
either one, two or more birds singing simultaneously. 
     The reason to choose these species is because they are 
abundant in Montes Azules, Chiapas, an ecological reserve 
where the sensor network will be deployed in the near 
future. 
 
2.2. Feature Extraction 
 
     The study of bird species can be improved, thus we 
need to use software tools to extract the different features 
of the signal which will be used later on to analyze and 
interpret the sound using computers. 
     Once we obtained the songs in .wav format, we loaded 
them into Sound Ruler [7]. With this software, we are able 
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Abstract  
 
      In this work we explore the application of data mining 
techniques to the problem of acoustic recognition of bird 
species. Most bird song analysis tools produce a large 
amount of spectral and temporal attributes from the 
acoustic signal. The identification of distinctive features 
has become critical in resource constrained applications 
such as habitat monitoring by sensor networks. Reducing 
computational requirements makes affordable to run a 
classifier on devices with power consumption constraints, 
such as nodes in a sensor network. Experimental results 
demonstrate that considerable dimensionality reduction 
can be achieved without significant loss in classification 
efficiency. 
 
1. Introduction 
 
     A significant amount of our knowledge on bird 
diversity and behavior is the result of field observations 
made by expert ornithologists. Bird species identification 
and the study of their interactions rely crucially on the 
visual and acoustic abilities of these experts. On the other 
hand, the identification of individual birds often requires 
the usage of visual aids, such as color banding.  
     As a result, the understanding of interactions among 
individual birds with complex societies has remained 
elusive. We also have very little information about the 
interactions amongst species and the influence that 
environmental facts as rain, earthquakes, predator 
invasions, etc, have on the behavior of a particular group 
of birds. Other facts also interfere with the reliability and 
accuracy of the information, such as human errors and the 
animal’s behavioral changes induced through their 
interactions with humans. 
     There are works where other approaches have been 
explored, such as canonical discriminant analysis [5] 
which demonstrates that invariant features don’t actually 
provide the most important recognition cues, contradicting 
some common assumptions in literature.  
     We propose automatic bird species and individual 
recognition through acoustic data in conjunction with the 
existing technology of sensor networks. Automation  
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to see the oscillogram and spectrogram of the signal and
within the oscillogram we are able to locate each call from 
the recording and each pulse within a call. “Calls tend to 
be shorter, simpler and produced by both sexes throughout 
the year.  Unlike songs, calls are less spontaneous and 
usually occur in particular contexts.” [2]. It’s important to 
mention that these songs were only preprocessed through 
low and high pass filters to facilitate an accurate call and 
pulse recognition. These filters are species dependant as 
we can see in Table 1.  
 

 Taraba Major 
Cercomacra 
Tyrannina 

Thamnophilus 
Doliatus 

Low-pass filter 3597 Hz 4200 Hz 3597 Hz 

High-pass filter 517 Hz 920 Hz 686 Hz 
Table 1. Low-pass and High-pass filters per species 

 
     Spectrograms are used in bird biology to identify 
phonetic sounds and analyze the bird songs. They are the 
result of calculating the frequency spectrum of windowed 
frames of a compound signal, a three-dimensional plot of 
the energy of the frequency content of a signal as it 
changes over time.  
     The pulse-by-pulse analysis results were saved as 
comma delimited files. These files contain the 71 attributes 
of each pulse from the processed samples, representing the 
bird’s song data. The resulting datasets’ size is as follows: 
Taraba Major – 21,360 pulse samples, Cercomacra 
Tyrannina – 5373 pulse samples, and Thamnophilus 
Doliatus – 911 pulse samples. 
 
2.3. Crossvalidation 
 
     Once we obtained the comma-delimited file with the 71 
attributes representing a bird’s song, we are ready to begin 
the data mining.  First we must define the crossvalidation 
scheme to be used that will ensure the proper evaluation, 
accuracy and reliability of the data mining algorithms.  
The database constructed from the comma-delimited file 
will be divided to form training and testing samples.  The 
training part of the database will consist of approximately 
70% of the total samples and the testing part will have the 
remaining 30%. 
 
2.4. Data Mining 
 
     When working with bird songs, we have unfortunately 
to deal with information that is represented as raw data.  
This information may contain valuable records that may be 
hidden from the naked eye.  We have to apply different 
computational tools in order to extract the information we 
require from the raw data.  The approach we took was to 
apply different data mining techniques in order to obtain 
the most relevant information from the raw data.  “Data 
mining is the extraction of implicit, previously unknown, 
and potentially useful information from the data.”[11] 
Once the important data is extracted, we can use only the  

significant information to feed our classifying algorithms
in the sensor nodes in order to recognize different bird 
species based on their song and call production. 
     During the development of this project, several data 
mining algorithms were studied and some were considered 
and applied to the data obtained from the song samples.  
The algorithms selected were the decision tree based ID3 
and J4.8, the probabilistic classifier Naïve-Bayes and 
vector quantization. Decision tree based algorithms were 
chosen to reduce the dimensionality of the problem, to 
eliminate data set redundancy and for classification. 
Naïve-Bayes was chosen in order to verify the 
classification results obtained from the decision trees and 
because of its affinity with non-redundant, independent 
data sets, such as the one produced after the reduction with 
decision tree algorithms’ execution. Vector quantization 
was chosen in order to convert our original numeric data 
set into nominal data, a requirement to run ID3 algorithm. 
By using this algorithm combination, we will be able to 
compare the full data set classification with the reduced 
data set classification in order to improve it while reducing 
the processing power required for its use in sensor 
networks. The classification improvement on the reduced 
data set is caused by the attribute dependency elimination 
by means of the decision tree algorithm.  
 
2.4.1. Vector Quantization. This algorithm was 
implemented because of the ID3’s lack of numeric support. 
Quantization [6] is a process in which numeric to nominal 
data conversion is possible. The algorithm takes an 
original numeric vector and returns a quantized equivalent 
numeric vector which can be easily represented by 
nominal values.  
     The quantization process calculates two intermediate 
vectors, partition and codebook. The partition vector is 
ordered and contains the minimum and maximum values 
from the original vector plus intermediate values 
calculated from adding the increase factor to the minimum 
value of the vector up to the maximum value from the 
vector. Increase factor is calculated as follows:  
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     The codebook vector is also ordered and includes 
values from zero to 12 1 −−bits  in increments of one. The 
partition’s vector size is one element lesser than 
codebook’s vector size. Finally we take each value from 
the original vector and check in which partition’s vector 
interval it falls and map it with the corresponding 
codebook vector’s value for that position. The easiest way 
to pass these quantized values to nominal values is to set a 
character equivalent for each codebook value so that you 
can map them directly. An example of this would be to 
have the next codebook for a 3 bit quantization: [0, 1, 2, 3, 
4, 5, 6, 7] and map it directly with the following vector: 
[‘0’, ‘1’, ‘2’, ‘3’ ‘4’, ‘5’, ‘6’, ‘7’]. As we can see, the 
“labels” contained in the last vector are equivalent to the 
values in the codebook vector. In this way, we obtain 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.4.3. J4.8. This algorithm is an extension of the ID3 
algorithm, which solves some deficiencies that the original 
ID3 algorithm had. Some of the improvements are that J48 
avoids over-fitting, uses a reduced-error pruning focus that 
is based on the consideration that each node of the tree is a 
prune candidate reducing this way the error, rule post-
pruning to find high precision hypothesis and numeric 
attribute handling. The two main advantages that made us 
select this algorithm are the computational cost savings 
and the numeric attribute handling. Weka was used to test 
this algorithm with our original data sets. The extracted 
attributes in the reduced data sets were also used to attempt 
a reliable classification with the Naïve-Bayes algorithm.  
 
2.4.4. Naïve-Bayes. We decided to introduce the Naïve-
Bayes algorithm usage as a final classifier because of the 
main disadvantages that decision tree algorithms have. 
One if them is that they are unstable. Slight variations in 
the training data can result in different attribute selections 
at each choice point within the tree. The effect can be 
significant since attribute choices affect all descendent 
sub-trees. Another important disadvantage with decision 
trees is that trees created from numeric data sets can be 
quite complex since attribute splits for numeric data are 
binary. 
     Naïve-Bayes was executed in Weka, for the original, 
post-ID3 and post-J4.8 datasets. It is a statistical method 
based on Bayes rule that naively assumes independence. 
The Bayes rule says that if you have an hypothesis H and 

an evidence E then [ ] [ ] [ ]
[ ]E
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values are handled by this algorithm assuming they have a 
“normal” or Gaussian probability distribution 
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calculated for each class and each numeric attribute.  
     “We know that it is only valid to multiply probabilities 
when the events are independent. The assumption that 
attributes are independent in real life certainly is a 
simplistic one.” [10]. In this work, we attempt to eliminate 
redundancy or dependency in data by means of decision 
trees (ID3 and J4.8). We use only its extracted attributes to 
construct the data set that will be fed into Naïve-Bayes 
trying to assert that we are working only with independent 
attributes and thus assuring that the learning process is 
being skewed as less as possible by redundancy and that 
the maximum efficiency is being obtained.  
 
3. Results 
 
     In Figure 2 we can see that the most accurate algorithm 
is J4.8 (without Naïve-Bayes) obtaining a 98.39% of 
accuracy. The original attribute number was 71 which this 
algorithm reduced to 47. We can also appreciate that 
regarding Naïve-Bayes, the reduced data sets produce a 
slightly better performance, up to 4.5% improvement.  

nominal representations from numeric values for any set of 
quantities making it possible to run the ID3 algorithm with 
them.  
     In Figure 1 we present a plot comparison from a full 
original signal with values from 0 to 5000 approximately 
versus a quantized signal with values from 0 to 6. We can 
clearly appreciate how the relationship among the attribute 
values is preserved in the quantized set, even though we 
can identify some information loss. 
 

Figure 1. Original vs. quantized signal 
 
2.4.2. ID3. Once we converted the entire species data 
sets into quantized data, we proceeded to process the 
information with a decision tree algorithm. “Decision tree 
algorithms use full binary trees that represent the 
comparisons between elements that are performed by a 
particular sorting algorithm operating on an input of a 
given size.” [11] The ID3 algorithm was used to generate 
the decision tree with Weka [11] software.  ID3 is a 
decision tree algorithm that takes all unused attributes and 
counts their entropy concerning the test samples to be 
used.  We define entropy as: 
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     The algorithm calculates the class’s and attribute’s 
entropy and performs a system gain.  Then it compares the 
sample entropies and chooses the one with the maximum 
information gain or smallest entropy to be the next center 
node.  When the tree is completed, the resulting nodes will 
be the most significant attributes used to classify the 
different instances or bird species (the leaves of the tree).   
     Once we obtained the corresponding decision tree, we 
only preserved in our data set the attributes that were used 
in the nodes of the tree (an attribute can be repeated in 
many nodes). This reduced data set will be used to attempt 
a reliable classification with the Naïve-Bayes algorithm. 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

individuals from the same species. We also plan to test the 
efficiency of J4.8 algorithm against the efficiency of 
Hidden Markov Models [10] for this problem, since they 
have been tested to be the best human speech recognition 
algorithms and it is possible that this excellent 
performance also extends to bird songs.  
     Finally we plan to take this work into the field and test 
our algorithms using adapted beamforming microphones 
with sensor networks and performing live monitoring and 
classification, expecting to see if our results hold, 
considering ambient noise and tropical weather 
interference. 
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Figure 2. Accuracy percentages graph 
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     Besides the reliable accuracy preservation, the required 
processing power is also directly affected from the 
attribute reduction, since the number of calculations 
needed to classify in a smaller data set is lower and so is 
the power consumption. 
     In the J4.8 tree, the most informative attribute was 
pulse dominant frequency, the root of the tree. In the next 
level we find the width of the dominant frequency peak at 
half of its height divided by the frequency of the peak. One 
more level down, we find the maximum of dominant 
frequency in the pulse, the total number of pulses in the 
call and the dominant frequency at final 50% peak 
amplitude. These five attributes which J4.8 identified as 
the most informative ones, contrast with the song duration, 
number of phrases and number of notes identified by 
Nelson [4] and the speed, duration, frequency range, and 
center frequency identified by Bard [1]. The reasons of 
these discrepancies are probably the use of songs from 
different bird species and different algorithms for attribute 
selection, such as canonical discriminant analysis. 
 
4. Conclusions and Future Work 
 
     The increase of performance obtained through the 
combination of decision tree algorithms and Naïve Bayes 
is due to the elimination of redundant information 
performed by these algorithms, although an 88.23% or 
90.13% are still not enough for reliable classification. 
     Since this work achieved good species recognition 
results, we plan to test these same algorithms using 
recordings from identified individuals expecting to see 
these excellent results when classifying different 


