
PROCESS CONCEPTS

1

3.1 Introduction

 Computers perform operations concurrently
 For example, compiling a program, sending a file to

a printer, rendering a Web page, playing music and
receiving e-mail

 Processes enable systems to perform and track
simultaneous activities

 Processes transition between process states
 Operating systems perform operations on processes

such as creating, destroying, suspending, resuming
and waking

3.1.1 Definition of Process

 A program in execution
 A process has its own address space consisting of:

 Text region
 Stores the code that the processor executes

 Data region
 Stores variables and dynamically allocated memory

 Stack region
 Stores instructions and local variables for active procedure calls

3.2 Process States: Life Cycle of a
Process

 A process moves through a series of discrete
process states:
– Running state

 The process is executing on a processor

– Ready state
 The process could execute on a processor if one were

available

– Blocked state
 The process is waiting for some event to happen before it

can proceed

 The OS maintains a ready list and a blocked list

3.3 Process Management

 Operating systems provide fundamental services
to processes including:
 Creating processes
 Destroying processes
 Suspending processes
 Resuming processes
 Changing a process’s priority
 Blocking processes
 Waking up processes
 Dispatching processes
 Interprocess communication (IPC)

3.3.1 Process States and State
Transitions

 Process states
 The act of assigning a processor to the first process

on the ready list is called dispatching
 The OS may use an interval timer to allow a process

to run for a specific time interval or quantum
 Cooperative multitasking lets each process run to

completion
 State Transitions

 At this point, there are four possible state transitions
 When a process is dispatched, it transitions from ready to
running

Figure 3.1 Process state transitions.

3.3.1 Process States and State
Transitions

3.3.2 Process Control Blocks (PCBs)/Process Descriptors

 PCBs maintain information that the OS needs to
manage the process
 Typically include information such as

 Process identification number (PID)
 Process state
 Program counter
 Scheduling priority
 Credentials
 A pointer to the process’s parent process
 Pointers to the process’s child processes
 Pointers to locate the process’s data and instructions in

memory

3.3.2 Process Control Blocks (PCBs)/Process Descriptors

 Process table
 The OS maintains pointers to each process’s PCB in

a system-wide or per-user process table
 Allows for quick access to PCBs
 When a process is terminated, the OS removes the

process from the process table and frees all of the
process’s resources

Figure 3.2 Process table and process control blocks.

3.3.2 Process Control Blocks (PCBs)/Process Descriptors

3.3.3 Process Operations

 A process may spawn a new process
 The creating process is called the parent process
 The created process is called the child process
 Exactly one parent process creates a child
 When a parent process is destroyed, operating

systems typically respond in one of two ways:
 Destroy all child processes of that parent
 Allow child processes to proceed independently of their

parents

Figure 3.3 Process creation hierarchy.

3.3.3 Process Operations

Figure 3.4 Process hierarchy in Linux.

3.3.3 Process Operations

3.3.4 Suspend and Resume

 Suspending a process
 Indefinitely removes it from contention for time on

a processor without being destroyed
 Useful for detecting security threats and for software

debugging purposes
 A suspension may be initiated by the process being

suspended or by another process
 A suspended process must be resumed by another

process
 Two suspended states:
• suspendedready
• suspendedblocked

Figure 3.5 Process state transitions with suspend and resume.

3.3.4 Suspend and Resume

3.3.5 Context Switching

 Context switches
 Performed by the OS to stop executing a running

process and begin executing a previously ready
process

 Save the execution context of the running process
to its PCB

 Load the ready process’s execution context from its
PCB

 Must be transparent to processes
 Require the processor to not perform any “useful”

computation

Figure 3.6 Context switch.

3.3.5 Context Switching

3.4 Interrupts

 Interrupts enable software to respond to signals from hardware
 May be initiated by a running process

 Interrupt is called a trap
 Synchronous with the operation of the process
 For example, dividing by zero or referencing protected memory

 May be initiated by some event that may or may not be related to the
running process

 Asynchronous with the operation of the process
 For example, a key is pressed on a keyboard or a mouse is moved

 Low overhead

 Polling is an alternative approach
 Processor repeatedly requests the status of each device
 Increases in overhead as the complexity of the system increases

3.4.1 Interrupt Processing

 Handling interrupts
 After receiving an interrupt, the processor completes

execution of the current instruction, then pauses the
current process

 The processor will then execute one of the kernel’s
interrupt-handling functions

 The interrupt handler determines how the system
should respond

 Interrupt handlers are stored in an array of pointers
called the interrupt vector

 After the interrupt handler completes, the
interrupted process is restored and executed or the

Figure 3.7 Handling interrupts.

3.4.1 Interrupt Processing

3.4.2 Interrupt Classes
 Supported interrupts depend on a system’s

architecture
 The IA-32 specification distinguishes between two

types of signals a processor may receive:
 Interrupts

 Notify the processor that an event has occurred or that an external
device’s status has changed

 Generated by devices external to a processor

 Exceptions
 Indicate that an error has occurred, either in hardware or as a

result of a software instruction
 Classified as faults, traps or aborts

Figure 3.8 Common interrupt types recognized in the Intel IA-32 architecture.

3.4.2 Interrupt Classes

Figure 3.9 Intel IA-32 exception classes.

3.4.2 Interrupt Classes

3.5 Interprocess Communication
 Many operating systems provide mechanisms for

interprocess communication (IPC)
 Processes must communicate with one another in

multiprogrammed and networked environments
 For example, a Web browser retrieving data from a distant

server
 Essential for processes that must coordinate activities

to achieve a common goal

3.5.1 Signals
 Software interrupts that notify a process that an

event has occurred
 Do not allow processes to specify data to exchange

with other processes
 Processes may catch, ignore or mask a signal

 Catching a signal involves specifying a routine that the OS
calls when it delivers the signal

 Ignoring a signal relies on the operating system’s default
action to handle the signal

 Masking a signal instructs the OS to not deliver signals of
that type until the process clears the signal mask

3.5.2 Message Passing
 Message-based interprocess communication

 Messages can be passed in one direction at a time
 One process is the sender and the other is the receiver

 Message passing can be bidirectional
 Each process can act as either a sender or a receiver

 Messages can be blocking or nonblocking
 Blocking requires the receiver to notify the sender when the

message is received
 Nonblocking enables the sender to continue with other

processing
 Popular implementation is a pipe

 A region of memory protected by the OS that serves as a
buffer, allowing two or more processes to exchange data

3.5.2 Message Passing
 IPC in distributed systems

 Transmitted messages can be flawed or lost
 Acknowledgement protocols confirm that transmissions

have been properly received
 Timeout mechanisms retransmit messages if

acknowledgements are not received
 Ambiguously named processes lead to incorrect

message referencing
 Messages are passed between computers using numbered

ports on which processes listen, avoiding this problem
 Security is a significant problem

 Ensuring authentication

3.6 Case Study: UNIX Processes
 UNIX processes

 All processes are provided with a set of memory
addresses, called a virtual address space

 A process’s PCB is maintained by the kernel in a
protected region of memory that user processes
cannot access

 A UNIX PCB stores:
 The contents of the processor registers
 PID
 The program counter
 The system stack

 All processes are listed in the process table

3.6 Case Study: UNIX Processes
 UNIX processes continued

 All processes interact with the OS via system calls
 A process can spawn a child process by using the fork

system call, which creates a copy of the parent
process
 Child receives a copy of the parent’s resources as well

 Process priorities are integers between -20 and 19
(inclusive)
 A lower numerical priority value indicates a higher

scheduling priority
 UNIX provides IPC mechanisms, such as pipes, to

allow unrelated processes to transfer data

Figure 3.10 UNIX system calls.

3.6 Case Study: UNIX Processes

