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3.1 Introduction

 Computers perform operations concurrently
 For example, compiling a program, sending a file to 

a printer, rendering a Web page, playing music and 
receiving e-mail

 Processes enable systems to perform and track 
simultaneous activities

 Processes transition between process states
 Operating systems perform operations on processes 

such as creating, destroying, suspending, resuming 
and waking



3.1.1 Definition of  Process

 A program in execution
 A process has its own address space consisting of:

 Text region
 Stores the code that the processor executes

 Data region
 Stores variables and dynamically allocated memory

 Stack region
 Stores instructions and local variables for active procedure calls



3.2 Process States: Life Cycle of  a 
Process

 A process moves through a series of  discrete 
process states:
– Running state

 The process is executing on a processor

– Ready state
 The process could execute on a processor if  one were 

available

– Blocked state
 The process is waiting for some event to happen before it 

can proceed

 The OS maintains a ready list and a blocked list 



3.3 Process Management

 Operating systems provide fundamental services 
to processes including:
 Creating processes
 Destroying processes
 Suspending processes
 Resuming processes
 Changing a process’s priority
 Blocking processes
 Waking up processes
 Dispatching processes
 Interprocess communication (IPC)



3.3.1 Process States and State 
Transitions

 Process states
 The act of  assigning a processor to the first process 

on the ready list is called dispatching
 The OS may use an interval timer to allow a process 

to run for a specific time interval or quantum
 Cooperative multitasking lets each process run to 

completion
 State Transitions

 At this point, there are four possible state transitions
 When a process is dispatched, it transitions from ready to 
running



Figure 3.1 Process state transitions.
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3.3.2 Process Control Blocks (PCBs)/Process Descriptors

 PCBs maintain information that the OS needs to 
manage the process
 Typically include information such as

 Process identification number (PID)
 Process state
 Program counter
 Scheduling priority
 Credentials
 A pointer to the process’s parent process
 Pointers to the process’s child processes
 Pointers to locate the process’s data and instructions in 

memory



3.3.2 Process Control Blocks (PCBs)/Process Descriptors

 Process table
 The OS maintains pointers to each process’s PCB in 

a system-wide or per-user process table
 Allows for quick access to PCBs
 When a process is terminated, the OS removes the 

process from the process table and frees all of  the 
process’s resources



Figure 3.2 Process table and process control blocks.
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3.3.3 Process Operations

 A process may spawn a new process
 The creating process is called the parent process
 The created process is called the child process
 Exactly one parent process creates a child
 When a parent process is destroyed, operating 

systems typically respond in one of  two ways:
 Destroy all child processes of  that parent
 Allow child processes to proceed independently of  their 

parents



Figure 3.3 Process creation hierarchy.
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Figure 3.4 Process hierarchy in Linux.
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3.3.4 Suspend and Resume

 Suspending a process
 Indefinitely removes it from contention for time on 

a processor without being destroyed
 Useful for detecting security threats and for software 

debugging purposes
 A suspension may be initiated by the process being 

suspended or by another process
 A suspended process must be resumed by another 

process
 Two suspended states:
• suspendedready
• suspendedblocked



Figure 3.5 Process state transitions with suspend and resume.
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3.3.5 Context Switching

 Context switches
 Performed by the OS to stop executing a running 

process and begin executing a previously ready 
process

 Save the execution context of  the running process 
to its PCB

 Load the ready process’s execution context from its 
PCB

 Must be transparent to processes
 Require the processor to not perform any “useful” 

computation



Figure 3.6 Context switch.
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3.4 Interrupts

 Interrupts enable software to respond to signals from hardware
 May be initiated by a running process

 Interrupt is called a trap
 Synchronous with the operation of  the process
 For example, dividing by zero or referencing protected memory

 May be initiated by some event that may or may not be related to the 
running process

 Asynchronous with the operation of  the process
 For example, a key is pressed on a keyboard or a mouse is moved

 Low overhead

 Polling is an alternative approach
 Processor repeatedly requests the status of  each device
 Increases in overhead as the complexity of  the system increases



3.4.1 Interrupt Processing

 Handling interrupts
 After receiving an interrupt, the processor completes 

execution of  the current instruction, then pauses the 
current process

 The processor will then execute one of  the kernel’s 
interrupt-handling functions

 The interrupt handler determines how the system 
should respond

 Interrupt handlers are stored in an array of  pointers 
called the interrupt vector

 After the interrupt handler completes, the 
interrupted process is restored and executed or the 



Figure 3.7 Handling interrupts.
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3.4.2 Interrupt Classes
 Supported interrupts depend on a system’s 

architecture
 The IA-32 specification distinguishes between two 

types of  signals a processor may receive:
 Interrupts

 Notify the processor that an event has occurred or that an external 
device’s status has changed

 Generated by devices external to a processor 

 Exceptions
 Indicate that an error has occurred, either in hardware or as a 

result of  a software instruction
 Classified as faults, traps or aborts



Figure 3.8 Common interrupt types recognized in the Intel IA-32 architecture.
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Figure 3.9 Intel IA-32 exception classes.
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3.5 Interprocess Communication
 Many operating systems provide mechanisms for 

interprocess communication (IPC)
 Processes must communicate with one another in 

multiprogrammed and networked environments
 For example, a Web browser retrieving data from a distant 

server
 Essential for processes that must coordinate activities 

to achieve a common goal



3.5.1 Signals
 Software interrupts that notify a process that an 

event has occurred
 Do not allow processes to specify data to exchange 

with other processes
 Processes may catch, ignore or mask a signal

 Catching a signal involves specifying a routine that the OS 
calls when it delivers the signal

 Ignoring a signal relies on the operating system’s default 
action to handle the signal

 Masking a signal instructs the OS to not deliver signals of  
that type until the process clears the signal mask



3.5.2 Message Passing
 Message-based interprocess communication

 Messages can be passed in one direction at a time
 One process is the sender and the other is the receiver

 Message passing can be bidirectional
 Each process can act as either a sender or a receiver

 Messages can be blocking or nonblocking
 Blocking requires the receiver to notify the sender when the 

message is received
 Nonblocking enables the sender to continue with other 

processing
 Popular implementation is a pipe

 A region of  memory protected by the OS that serves as a 
buffer, allowing two or more processes to exchange data



3.5.2 Message Passing
 IPC in distributed systems

 Transmitted messages can be flawed or lost
 Acknowledgement protocols confirm that transmissions 

have been properly received
 Timeout mechanisms retransmit messages if  

acknowledgements are not received
 Ambiguously named processes lead to incorrect 

message referencing
 Messages are passed between computers using numbered 

ports on which processes listen, avoiding this problem
 Security is a significant problem

 Ensuring authentication



3.6 Case Study: UNIX Processes
 UNIX processes

 All processes are provided with a set of  memory 
addresses, called a virtual address space

 A process’s PCB is maintained by the kernel in a 
protected region of  memory that user processes 
cannot access

 A UNIX PCB stores:
 The contents of  the processor registers
 PID
 The program counter
 The system stack

 All processes are listed in the process table



3.6 Case Study: UNIX Processes
 UNIX processes continued

 All processes interact with the OS via system calls
 A process can spawn a child process by using the fork 

system call, which creates a copy of  the parent 
process
 Child receives a copy of  the parent’s resources as well

 Process priorities are integers between -20 and 19 
(inclusive)
 A lower numerical priority value indicates a higher 

scheduling priority
 UNIX provides IPC mechanisms, such as pipes, to 

allow unrelated processes to transfer data



Figure 3.10 UNIX system calls.
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