RS-232 Line Driver

Microprocessors 1

MCS-51 Serial Port

® RS-232 requires non-TTL compatible voltage
levels
— -3to—-25for 1 and +3 to +25 for O

* Therefore, we need an interface to connect to
standard TTL chips.

— MAX 232 and MAX 233 chips.

» Accept standard TTL logic levels and produce RS-232
levels.
« Utilize a normal +5 V supply.

Microprocessors 1 Msc. lvan A. Escobar 1

Introduction to Serial Communications

Msc. Ivan A. Escobar

MCS-51 Serial Port

Microprocessors 1

® Serial vs. Parallel transfer of data
® Simplex, Duplex and half-Duplex modes

® Synchronous, Asynchronous
— UART - Universal Asynchronous Receiver/Transmitter.

» Handles all issues related to the asynchronous transmission of
byte sized data.

— USART - Universal Synchronous/Asynchronous
Receiver/Transmitter.

® Data transfer rate
— Bps, baud.

® MCS-51 has a full-duplex serial port that can be
used as a normal serial interface (non-framed) or
as an internal UART (framed).
— This serial port controls the RxD and TxD dual
functions for pins P3.0 and P3.1.

®* The MCS-51 serial port is controlled using the
SCON SFR (98H).

®* The MCS-51 serial port communicates with the
rest of the chip using the SBUF SFR (99H).

Msc. Ivan A. Escobar 2

Framing

Microprocessors 1

Msc. Ivan A. Escobar

The SBUF Register

Microprocessors 1

® An 8-bit message needs to be “framed” so that the
receiver can detect correctly its beginning and end.

® Standard framing:
— Start bit — always 0, Stop bit — always 1.
— Optional parity bit
— Stop bit can be one or two bits

— The message now becomes:
« Start bit (150), LSB, ..., MSB, <parity bit>, Stop bit (0-1),
<2nd stop bit (1)>

® SBUF is actually two separate registers at the same address.
— Write-only transmit register.
— Read-only receive register.
« Cannot read back what was sent for transmission.

® The byte to be transmitted on the serial port is “written” into
SBUF.
— Serial transmission starts immediately.

® The byte received from the serial port will be stored in SBUF
once the last bit is received.
— This is called “double buffering”.

* Received data is buffered in the serial port itself until the full byte is
received. This allows a little more time to deal with the previous data
before its over-written with the new one.

Start 0 1 2 3 4 5 6 7 <pP> Stop <St>
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ I:l « HOWEVER, the previous data must be read before the new byte
Time completes. Otherwise, the old data will be lost.
Microprocessors 1 Msc. Ivan A. Escobar 3 Microprocessors 1 Msc. Ivan A. Escobar

RS-232 Protocol

The SCON Register

® Serial communication standard for small
computing systems.
— Original intent was for communication between
small computer. Mostly used for communication
with slow peripherals.

* The cable connecting the PC to the Kit in the lab follows
this standard.

* Defines many signals — about 25 — however, only
three are used in most cases.

— RxD — Received Data
— TxD — Transmitted Data
— GND - Common Ground

MSB LSB
[smo [swi [sm2 [ren [7188 [RE8 [T [m |
Bit Name | Description

SCON.7 | SMO | Serial Port Mode bit 0

SCON.6 | SM1 | Serial Port Mode bit 1

SCON.5 [SM2 | Multiprocessor Communication Enable

SCON.4 | REN | Receive Enable

Set to enable reception. CLR to disable reception.
SCON.3 | TB8 Bit 8 of message to transmit

Used to transmit optional parity bit

SCON.2 | RB8 Bit 8 of received message

Receives optional parity bit

SCON.1 [TI Transmit Interrupt Flag
Set when Byte in SBUF is completely transmitted.
SCON.O [RI Receive Interrupt Flag

Set when a valid byte is received into SBUF

Microprocessors 1 Msc. Ivan A. Escobar 4

Microprocessors 1 Msc. Ivan A. Escobar

Modes of the Serial Port

Mode 1 Transmission

®* Mode 0 —-SM0=SM1=0
— Half Duplex Synchronous Operation.
« Data is sent and received (not simultaneously) using the
RxD pin.
« The TxD pin carries “the shift clock” during both receiving
and transmitting. (Reference clock for synchronization).
« Data is sent in 8-bit un-framed packets.
LSB first.
» Data rate is set to 1/12 clock frequency.
Machine Cycle Frequency.
Same as the shift clock.

® Transmission starts when anything is written into
SBUF.

® The period for each bit is the reciprocal of the
baud rate.

® The transmit interrupt (TI) flag is set as soon as
the stop bit appears on TxD.

Microprocessors 1 Msc. lvan A. Escobar 9

Mode 0 — Transmission

Msc. Ivan A. Escobar 13

Mode 1 Reception

Microprocessors 1

* Transmission starts as soon as byte is written into SBUF.

® During transmission, each bit stays valid on the RxD pin for one
complete machine cycle.

— The shift clock goes low in the middle of the cycle and returns high
right before the end.

* The Tl flag is set when the 8™ bit is done transmitting.

«—— MachineCycle —— ————————»

o UL UL

Data out | |

Shift Clock

® Reception is initiated by a 1-to-0 transition on the
RxD line (assuming REN is 1).
— A divide-by-16 counter is immediately started. The
next bit is expected to arrive at the roll-over of this
counter.

— Bits are sampled at the 8" count of this counter.

* “False Start Bit Detection”

— 8 counts after the 1-to-0 transition, the RxD line is
samples again. If it is not O, then we have a false
start bit. The receiver is reset and waits for the
next 1-to-0 transition.

Microprocessors 1 Msc. Ivan A. Escobar 10

Mode 0 — Reception

Msc. Ivan A. Escobar 14

Mode 1 Reception

Microprocessors 1

® Reception is initiated as soon as REN bit is set to
1 and the receive interrupt (RI) bit is cleared.
— Usually, REN is set at the beginning of the
program to initialize the serial port, then Rl is
cleared to start a data input operation.

* As soon as Rl is cleared, the shift clock will be
produced on the TxD pin.
— At the beginning of the following machine cycle,
data will be clocked in from the RxD line.
* The clocking occurs on the rising edge of the TxD line.
— After the 8t clocking cycle, the data is copied to
SBUF and the RI bit is set.

® Assuming that a valid start bit was detected:
— The start bit is skipped.
— Eight data bits are clocked into the serial port’s
register (NOT SBUF).
— When all eight bits are received:
» The ninth bit (the stop bit) is clocked into RB8

* SBUF is loaded with the right data bits
* The receiver interrupt flag (RI) is set.

— The above three steps only occur if Rl was 0 to
start with.
» Do not overwrite the previous data if it has not been read.

Microprocessors 1 Msc. lvan A. Escobar 11

Mode 1

Msc. Ivan A. Escobar 15

Mode 2

Microprocessors 1

® In mode 1, the 8051 serial port operates an 8-bit
UART with variable baud rate.

— The essential operation of a UART is parallel-to-
serial conversion of output data and serial-to-
parallel conversion of input data.

® 10 bits are transmitted on TxD or received on
RxD.

— Start bit, 8 data bits, 1 stop bit.

® The baud rate is set by the Timer 1 overflow rate.

® The serial port operates as a 9-bit UART with a fixed baud
rate.
® 11 bits are transmitted:
— The start bit
— The 8 data bits from SBUF
— A 9t data bit from TB8
— The stop bit

* On reception, the 9™ data bit will be placed in RBS.

® The baud rate is fixed at either 1/32 or 1/64 of the
oscillator frequency.

Microprocessors 1 Msc. Ivan A. Escobar 12

Microprocessors 1 Msc. Ivan A. Escobar 16

Mode 3

Steps to Transmit a Byte

* O-Bit UART with Variable Baud Rate.
— Combination of modes 1 and 2.

Clear TI

(SBUF < byte)

ON ok WwW NPF

Program T1 for Mode2 (TMOD <« 0x20)

Load TH1 with the initial value (baud rate
dependant) (TH1 < FD/FA /F4/ E8)

Program SCON for Model (SCON « 0x50)
Start Timerl (SETB TR1)

Load SBUF with the byte to be transferred

Wait until TI becomes 1 (JNB TI, not_done)
Go back to Step5 for next byte

Microprocessors 1 Msc. lvan A. Escobar 17

The Baud Rates

Microprocessors 1

Msc. Ivan A. Escobar 21

Examples: Transmit a character

* |In Mode 0, the baud rate is fixed at the clock
frequency divided by 12.

® By default, the baud rate in mode 2 is set to 1/64
of the clock frequency.
— However, bit 7 of the PCON (Power Control)
Register — known as SMOD - doubles the baud
rate if it is set to 1.
— So, if SMOD = 1, the baud rate for mode 2 is 1/32
of the clock frequency.

® Transfer ASCII “A” serially at 9600 baud

continuously

START: MOV TMOD, #20H

;Put T1 in mode2

MOV TH1, #-3 ;9600 baud
MOV SCON, #50H ;8b, 1stop, 1start, REN enabled
SETB TR1 ;start timer T1

AGAIN: CLRTI ;ready to transmit
MOV SBUF, #A’ ;letter A is to be transmitted

HERE: JNB TI, HERE ;poll T1 until all the bits are transmitted
SIMP AGAIN ;while(1) loop (forever loop)

Microprocessors 1 Msc. Ivan A. Escobar 18

The Baud Rates (Contd.)

Microprocessors 1

Msc. Ivan A. Escobar 22

Steps to Receive a Byte

* In modes 1 and 3, the baud rate is set by the
overflow rate of Timer 1.
— However, that rate is too high. So, it is divided by
32 (or 16 if SMOD = 1) to generate the real baud
rate.

— You can think about as if Timer 1 will be clocked
at XTAL / (12 * 32) = 28,800Hz (when SMOD = 0)
or XTAL /(12 * 16) = 57,600Hz (when SMOD = 1)

® Transm=k x freq/(32*12*[256-TH1])
— TH1=256-((k*freq)/(32*12*transmirate))

Program T1 for Mode2 (TMOD <« 0x20)

Load TH1 with the initial value (baud rate
dependant)
(TH1 « FD / FA/ F4 | E8)

Program SCON for Model (SCON « 0x50)
Start Timerl (setb TR1)

Clear RI

Wait until RI becomes 1 (jnb RI, not_done)
Store SBUF (A <~ SBUF)

Go back to Step5 for next byte

N =

0N Ok~ W

Microprocessors 1 Msc. lvan A. Escobar 19

Setting Timer 1 to Generate Baud Rate

Microprocessors 1 Msc. lvan A. Escobar 23

Example: Receive Data

® How do we produce a baud rate of 1200 using an
8051 with a clock frequency of 12 MHz?

— Baud Rate = K* FREC/(32*12*[256-TH1])

— To produce 1200 baud, we need to set timer 1 to
count for: 23 counts.
« Set Timer 1 to operate in mode 2 (auto-reload) and set

® Receive bytes serially and display them on P1,

continuously.

START: MOV TMOD, #20H ;T1in mode 2
MOV TH1, #-3 ;9600 baud
MOV SCON, #50H ;8b, 1start, 1stop
SETB TR1 start T1

AGAIN: CLRRI
HERE: JNB RI, HERE

;ready to receive a byte
;wait until one byte is Rx-ed

MOV A, SBUF ;read the received byte from SBUF
TH1 to OE6H (-23). MOV P1, A ;display on P1
SIMP AGAIN :while (1)
Microprocessors 1 Msc. Ivan A. Escobar 20 Microprocessors 1 Msc. lvan A. Escobar 24

Serial Ports with Interrupts

® Using serial port with interrupts is THE way it was
intended to be used.

® Both the Rl and TI flags raise the Serial interrupt
(S0), if SO is enabled in IE.
— ISR for SO is at 0x0023
® Simple Case
— Transmit is polling based (Poll Tl flag) and
Receive is interrupt driven
— Transmit is interrupt driven and Receive is polling
based (Poll RI flag)
® In these cases, the ISR of SO will check for the
appropriate flag and either copy data to or from
SBUF

Microprocessors 1 Msc. lvan A. Escobar 25

Serial Ports with Interrupts

® General Case

— 8051 is in full duplex mode, l.e. receives and
transmits data continuously

— Both Transmit and Receive is interrupt driven
® Write the ISR for SO such that

— ISR must first check which one of Rl and Tl raised
the SO interrupt

— If Rl is set, then read data from SBUF to a safe
place and clear RI

— If Tl is set, then copy the next character to be
transmitted onto SBUF and clear TI.

Microprocessors 1 Msc. Ivan A. Escobar 26

Example : Simple case

* 8051 gets data from P1 and sends it to P2 continuously while receiving
from Serial port. Serial port data is to be displayed on PO

ORG 0 ORG 100H
LIMP MAIN ; avoid the IVT SERIAL: JB TI, TRANS
MOV A, SBUF ;copy received data
ORG 23H ; serial port ISR MOV PO, A ;display it on PO
LIMP SERIAL CLRRI iclear RI
RETI
ORG 30H TRANS: CLRTI ;do nothing
MAIN: MOV P1, #0OFFH ; P1 as input port RETI JISR does not handle TX
MOV TMOD, #20 ; T1in mode 2 end
MOV TH1, #-3 ; 9600 baud
MOV SCON, #50H ; 8b, 1start, 1stop
MOV IE, #10010000B ; enable SO interrupt
SETB TR1 ; enable T1
BACK: MOVA, P1
MOV P2, A
SIMP BACK

Microprocessors 1 Msc. lvan A. Escobar 27

