Chapter 1: Introduction Operating Systems MSc. Ivan A. Escobar

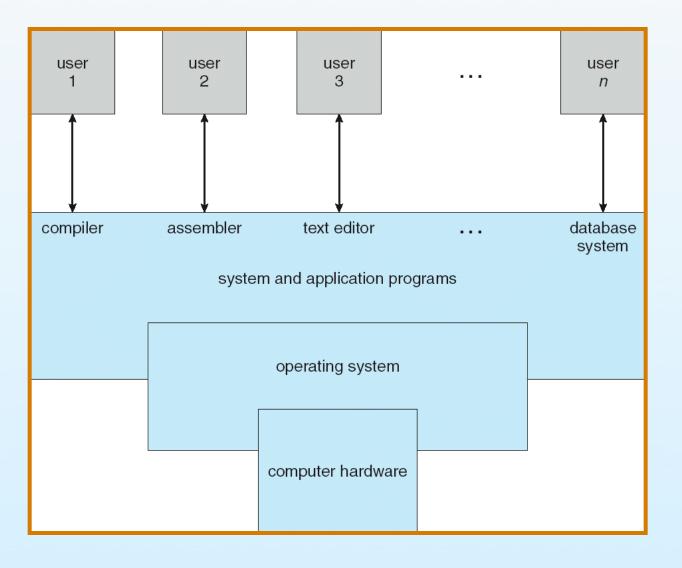
What is an Operating System?

- A program that acts as an intermediary between a user of a computer and the computer hardware.
- Operating system goals:
 - Execute user programs and make solving user problems easier.
 - Make the computer system convenient to use.
- Use the computer hardware in an efficient manner.

What is an Operating System?

- Separates applications from the hardware they access
 - Software layer
 - Manages software and hardware to produce desired results
- Operating systems primarily are resource managers
 - Hardware
 - Processors
 - Memory
 - Input/output devices
 - Communication devices
 - Software applications

Computer System Structure


Computer system can be divided into four components

- Hardware provides basic computing resources
 - CPU, memory, I/O devices
- Operating system
 - Controls and coordinates use of hardware among various applications and users
- Application programs define the ways in which the system resources are used to solve the computing problems of the users
 - Word processors, compilers, web browsers, database systems, video games
- Users
 - People, machines, other computers

Four Components of a Computer System

Silberschatz ©2005 Ivan Escobar ©2007

Uso y Administracion de Sistemas Operativos 2007

Operating System Definition

OS is a **resource allocator**

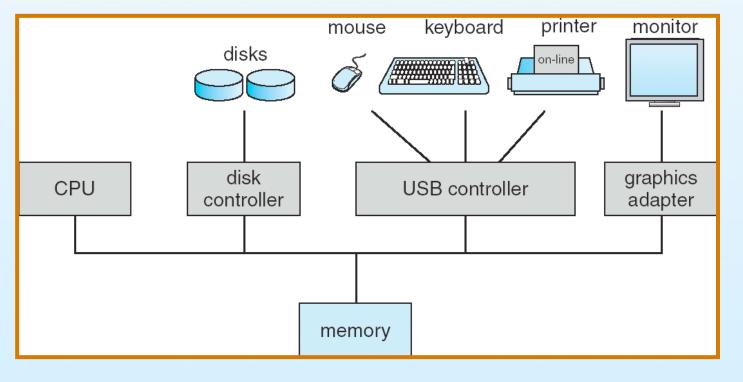
- Manages all resources
- Decides between conflicting requests for efficient and fair resource use
- OS is a control program
 - Controls execution of programs to prevent errors and improper use of the computer

Operating System Definition (Cont.)

- No universally accepted definition
- "Everything a vendor ships when you order an operating system" is good approximation
 - But varies wildly
- "The one program running at all times on the computer" is the kernel. Everything else is either a system program (ships with the operating system) or an application program

Computer Startup

- bootstrap program is loaded at power-up or reboot
 - Typically stored in ROM or EPROM, generally known as firmware
 - Initializates all aspects of system
 - Loads operating system kernel and starts execution



Computer System Organization

Computer-system operation

- One or more CPUs, device controllers connect through common bus providing access to shared memory
- Concurrent execution of CPUs and devices competing for memory cycles

1.

Computer-System Operation

- I/O devices and the CPU can execute concurrently.
- Each device controller is in charge of a particular device type.
- Each device controller has a local buffer.
- CPU moves data from/to main memory to/from local buffers
- I/O is from the device to local buffer of controller.
- Device controller informs CPU that it has finished its operation by causing an *interrupt*.

Common Functions of Interrupts

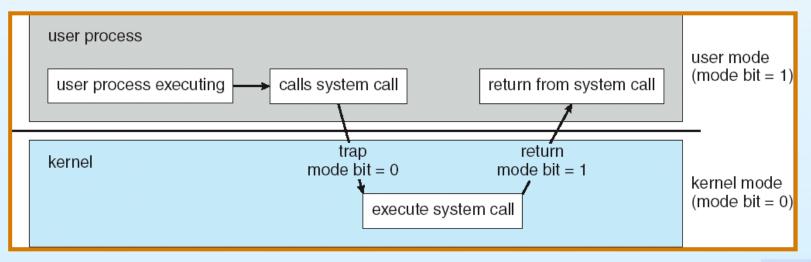
- Interrupt transfers control to the interrupt service routine generally, through the *interrupt vector*, which contains the addresses of all the service routines.
- Interrupt architecture must save the address of the interrupted instruction.
- Incoming interrupts are *disabled* while another interrupt is being processed to prevent a *lost interrupt*.
- A trap is a software-generated interrupt caused either by an error or a user request.
- An operating system is *interrupt* driven.

Interrupt Handling

- The operating system preserves the state of the CPU by storing registers and the program counter.
- Determines which type of interrupt has occurred:
 - polling
 - vectored interrupt system
- Separate segments of code determine what action should be taken for each type of interrupt

Operating-System Operations

- Interrupt driven by hardware
- Software error or request creates **exception** or **trap**
 - Division by zero, request for operating system service
- Other process problems include infinite loop, processes modifying each other or the operating system
- Dual-mode operation allows OS to protect itself and other system components
 - User mode and kernel mode
 - Mode bit provided by hardware
 - Provides ability to distinguish when system is running user code or kernel code
 - Some instructions designated as privileged, only executable in kernel mode
 - System call changes mode to kernel, return from call resets it to user



Transition from User to Kernel Mode

Timer to prevent infinite loop / process hogging resources

- Set interrupt after specific period
- Operating system decrements counter
- When counter zero generate an interrupt
- Set up before scheduling process to regain control or terminate program that exceeds allotted time

Silberschatz ©2005 Ivan Escobar ©2007

1.3 Early History: The 1940s and 1950s

- Operating systems evolved through several phases
 - 1940s
 - Early computers did not include operating systems
 - 1950s
 - Executed one job at a time
 - Included technologies to smooth job-to-job transitions
 - Single-stream batch-processing systems
 - Programs and data submitted consecutively on tape

1.4 The 1960s

1960s

- Still batch-processing systems
- Process multiple jobs at once
 - Multiprogramming
- One job could use processor while other jobs used peripheral devices
- Advanced operating systems developed to service multiple interactive users

1964

 IBM announced System/360 family of computers

1.5 The 1970s

Primarily multimode timesharing systems

- Supported batch processing, timesharing and real-time applications
- Personal computing only in incipient stages
 - Fostered by early developments in microprocessor technology
- Department of Defense develops TCP/IP
 - Standard communications protocol
 - Widely used in military and university settings
 - Security problems
 - Growing volumes of information passed over vulnerable communications lines.

1.6 The 1980s

1980s

- Decade of personal computers and workstations
- Computing distributed to sites at which it was needed
- Personal computers proved relatively easy to learn and use
 - Graphical user interfaces (GUI)
- Transferring information between computers via networks became more economical and practical

1.6 The 1980s

Client/server computing model became widespread

- Clients request various services
- Servers perform requested services
- Software engineering field continued to evolve
 - Major thrust by the United States government aimed at tighter control of Department of Defense software projects
 - Realizing code reusability
 - Greater degree of abstraction in programming languages
 - Multiple threads of instructions that could execute independently

1.7 History of the Internet and World

Advanced Research Projects Agency (ARPA)

- Department of Defense
- In late 1960s, created and implemented ARPAnet
 - Grandparent of today's Internet
 - Networked main computer systems of ARPA-funded institutions
 - Capable of near-instant communication via e-mail
 - Designed to operate without centralized control

1.7 History of the Internet and World

Transmission Control Protocol/Internet Protocol

- Set of rules for communicating over ARPANet
- TCP/IP manages communication between applications
- Ensure that messages routed properly from sender to receiver
 - Error-correction
- Later opened to general commercial use

1.7 History of the Internet and World

World Wide Web (WWW)

- Locate and view multimedia-based documents on almost any subject
- Early development begun in 1989 at CERN by Tim Berners-Lee
- Technology for sharing information via hyperlinked text documents
- HyperText Markup Language (HTML)
 - Defines documents on WWW
- Hypertext Transfer Protocol (HTTP)
 - Communications backbone used to transfer documents across WWW

Hardware performance improved exponentially

- Inexpensive processing power and storage
 - Execute large, complex programs on personal computers.
 - Economical machines for extensive database and processing jobs
 - Mainframes rarely necessary
- Shift toward distributed computing rapidly accelerated
 - Multiple independent computers performing common task

Operating system support for networking tasks became standard

- Increased productivity and communication
- Microsoft Corporation became dominant
 - Windows operating systems
 - Employed many concepts used in early Macintosh operating systems
 - Enabled users to navigate multiple concurrent applications with ease.
- Object technology became popular in many areas of computing
 - Many applications written in object-oriented programming languages
 - For example, C++ or Java
 - Object-oriented operating systems (OOOS)
 - Objects represent components of the operating system
 - Concepts such as inheritance and interfaces

Uso y Administracion de Sistemas Operativos 2007 create modular operating systems ilberschatz ©2005 Ivan Escobar ©2007

Most commercial software sold as object code

- The source code not included
- Enables vendors to hide proprietary information and programming techniques
- Free and open-source software became increasingly common in the 1990s
 - Open-source software distributed with the source code
 - Allows individuals to examine and modify software
 - Linux operating system and Apache Web server both opensource
- Richard Stallman launched the GNU project
 - Recreate and extend tools for AT&T's UNIX operating system

Open Source Initiative (OSI)

- Founded to further benefits of open-source programming
- Facilitates enhancements to software products
 - Permits anyone to test, debug and enhance applications
- Increases chance that subtle bugs will be caught and fixed
 - Crucial for security errors which need to be fixed quickly
- Individuals and corporations can modify the source
 - Create custom software to meet needs of certain environment

Operating systems became increasingly user friendly

- GUI features pioneered by Apple widely used and improved
- "Plug-and-play" capabilities built into operating systems
 - Enable users to add and remove hardware components dynamically
 - No need to manually reconfigure operating system

1.9 2000 and Beyond

Middleware

- Links two separate applications
 - Often over a network and between incompatible machines
- Particularly important for Web services
 - Simplifies communication across multiple architectures
- Web services
 - Encompass set of related standards
 - Ready-to-use pieces of software on the Internet
 - Enable any two applications to communicate and exchange data

Operating systems intended for high-end environments

- Special design requirements and hardware support needs
 - Large main memory
 - Special-purpose hardware
 - Large numbers of processes
- Embedded systems
 - Characterized by small set of specialized resources
 - Provide functionality to devices such as cell phones and PDAs
 - Efficient resource management key to building successful operating system

Real-time systems

- Require that tasks be performed within particular (often short) time frame
 - Autopilot feature of an aircraft must constantly adjust speed, altitude and direction
- Such actions cannot wait indefinitely—and sometimes cannot wait at all

- Virtual machines (VMs)
 - Software abstraction of a computer
 - Often executes on top of native operating system
- Virtual machine operating system
 - Manages resources provided by virtual machine
- Applications of virtual machines
 - Allow multiple instances of an operating system to execute concurrently
 - Emulation
 - Software or hardware mimics functionality of hardware or software not present in system
 - Promote portability

Figure 1.2 Schematic of a virtual machine.

Applications	Applications	Applications	
Linux	Windows	UNIX	
			Virtual hardware layer
Applications	Virtual machine	Applications	
	Operating system		Software
			Physical hardware layer
Processor	Memory	Disk	

1.12 Operating System Components and

- Computer systems have evolved
 - Early systems contained no operating system,
 - Later gained multiprogramming and timesharing machines
 - Personal computers and finally truly distributed systems
 - Filled new roles as demand changed and grew

1.12.1 Core Operating System

User interaction with operating system

- Often, through special application called a shell
- Kernel
 - Software that contains core components of operating system
- Typical operating system components include:
 - Processor scheduler
 - Memory manager
 - I/O manager
 - Interprocess communication (IPC) manager
 - File system manager

Silberschatz ©2005 Ivan Escobar ©2007

1.12.1 Core Operating System

Multiprogrammed environments now common

- Kernel manages the execution of processes
- Program components which execute independently but use single memory space to share data are called threads.
- To access I/O device, process must issue system call
 - Handled by device driver
 - Software component that interacts directly with hardware
 - Often contains device-specific commands

1.12.2 Operating System Goals

Users expect certain properties of operating systems

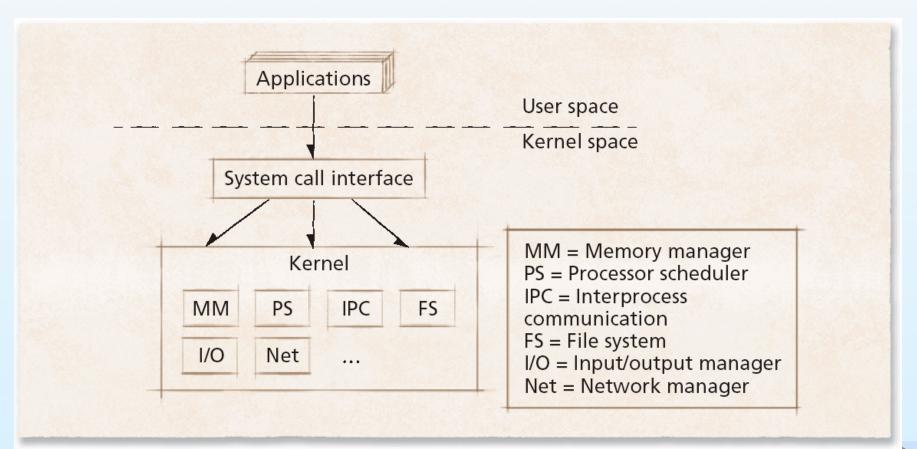
- Efficiency
- Robustness
- Scalability
- Extensibility
- Portability
- Security
- Protection
- Interactivity
- Usability

1.13 Operating System Architectures

Today's operating systems tend to be complex

- Provide many services
- Support variety of hardware and software
- Operating system architectures help manage this complexity
 - Organize operating system components
 - Specify privilege with which each component executes

1.13.1 Monolithic Architecture


- Monolithic operating system
 - Every component contained in kernel
 - Any component can directly communicate with any other
 - Tend to be highly efficient
 - Disadvantage is difficulty determining source of subtle errors

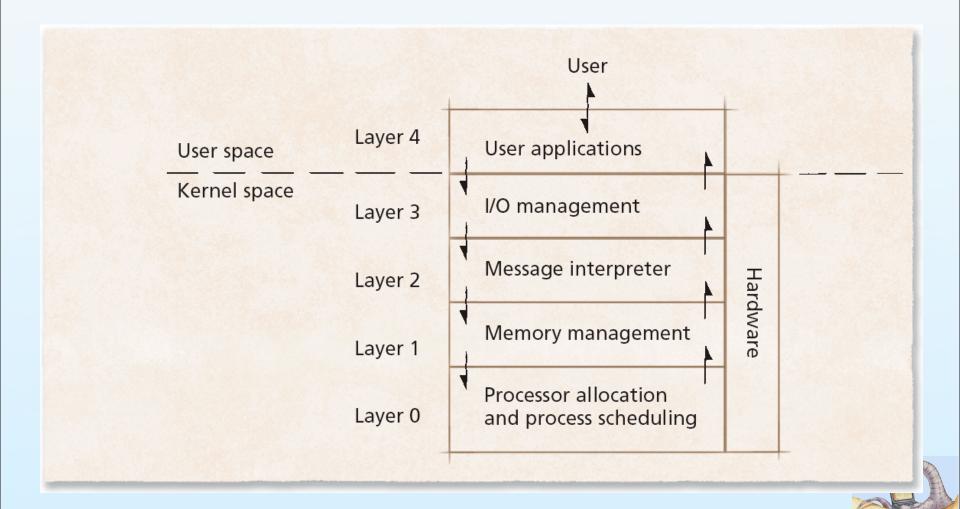
1.13.1 Monolithic Architecture

Figure 1.3 Monolithic operating system kernel architecture.

Silberschatz ©2005 Ivan Escobar ©2007

1.13.2 Layered Architecture

Layered approach to operating systems


- Tries to improve on monolithic kernel designs
 - Groups components that perform similar functions into layers
- Each layer communicates only with layers immediately above and below it
- Processes' requests might pass through many layers before completion
- System throughput can be less than monolithic kernels
 - Additional methods must be invoked to pass data and control

1.13.2 Layered Architecture

Figure 1.4 Layers of the THE operating system.

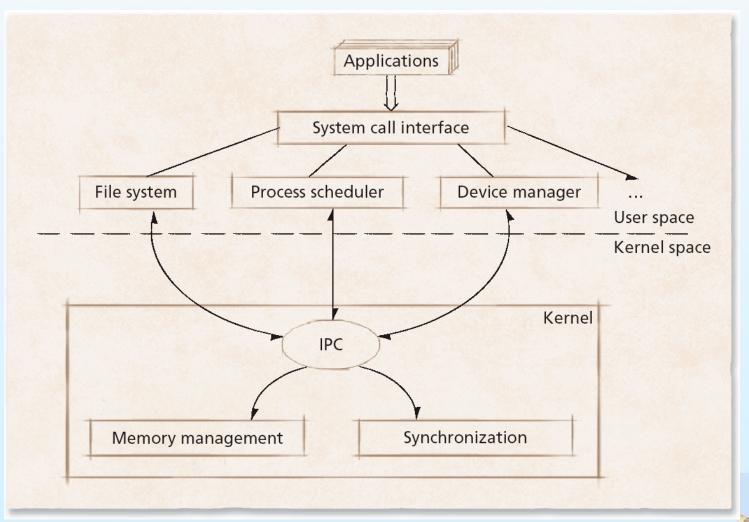
Uso y Administracion de Sistemas Operativos 2007

Silberschatz ©2005 Ivan Escobar ©2007

1.13.3 Microkernel Architecture

Microkernel operating system architecture

- Provides only small number of services
 - Attempt to keep kernel small and scalable
- High degree of modularity
 - Extensible, portable and scalable
- Increased level of intermodule communication
 - Can degrade system performance

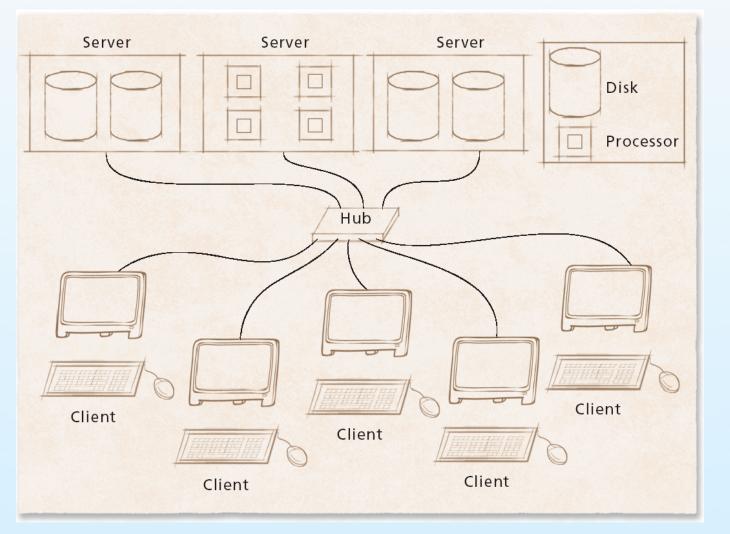


Silberschatz ©2005 Ivan Escobar ©2007

1.13.3 Microkernel Architecture

Figure 1.5 Microkernel operating system architecture.

1.13.4 Networked and Distributed Operating Systems


- Network operating system
 - Runs on one computer
 - Allows its processes to access resources on remote computers
- Distributed operating system
 - Single operating system
 - Manages resources on more than one computer system
 - Goals include:
 - Transparent performance
 - Scalability
 - Fault tolerance
 - Consistency

1.13.4 Networked and Distributed Operating Systems

Figure 1.6 Client/server networked operating system model.

